Project description:DNA repair competency is one determinant of sensitivity to certain chemotherapy drugs, such as cisplatin. Cancer cells with intact DNA repair can avoid the accumulation of genome damage during growth and also can repair platinum-induced DNA damage. We sought genomic signatures indicative of defective DNA repair in cell lines and tumors and correlated these signatures to platinum sensitivity. The number of subchromosomal regions with allelic imbalance extending to the telomere (NtAI) predicted cisplatin sensitivity in vitro and pathologic response to preoperative cisplatin treatment in patients with triple-negative breast cancer (TNBC). In serous ovarian cancer treated with platinum-based chemotherapy, higher levels of NtAI forecast a better initial response. We found an inverse relationship between BRCA1 expression and NtAI in sporadic TNBC and serous ovarian cancers without BRCA1 or BRCA2 mutation. Thus, accumulation of telomeric allelic imbalance is a marker of platinum sensitivity and suggests impaired DNA repair.
Project description:DNA repair competency is one determinant of sensitivity to certain chemotherapy drugs, such as cisplatin. Cancer cells with intact DNA repair can avoid the accumulation of genome damage during growth and also can repair platinum-induced DNA damage. We sought genomic signatures indicative of defective DNA repair in cell lines and tumors and correlated these signatures to platinum sensitivity. The number of subchromosomal regions with allelic imbalance extending to the telomere (NtAI) predicted cisplatin sensitivity in vitro and pathologic response to preoperative cisplatin treatment in patients with triple-negative breast cancer (TNBC). In serous ovarian cancer treated with platinum-based chemotherapy, higher levels of NtAI forecast a better initial response. We found an inverse relationship between BRCA1 expression and NtAI in sporadic TNBC and serous ovarian cancers without BRCA1 or BRCA2 mutation. Thus, accumulation of telomeric allelic imbalance is a marker of platinum sensitivity and suggests impaired DNA repair. SNP data from 27 and 40 primary triple negative breast cancer tumor samples from two clinical trials treated with cisplatin and cisplatin + bevacizumab. Labeling, hybridization and data processing was performed by Affymetrix using 70k MIP arrays and 330k MIP arrays. In the cisplatin trial, matched normal samples based on blood from all patients and an additional three samples based on FFPE negative lymph nodes were used as references (30 normal references in total). In the cisplatin+bevacizumab trial, mathed normal samples based on blood from 10 patients were used as references.
Project description:Triple negative breast cancers (TNBCs) are characterised by a wide spectrum of genomic aberrations representing underlying repair defects that may be targeted therapeutically. However, means to measure these defects in tumours and an understanding of their effect on sensitivity to DNA damaging agents is limited. We sought to address this by establishing methods to trace underlying deficiencies in DNA repair processes using patterns of genomic instability. Here, we demonstrate that a pattern related to Homologous Recombination defects, allelic-imbalanced Copy Number Aberration, predicts response to platinum containing chemotherapeutics in TNBC patients. These patterns also enabled us to identify a meiotic gene HORMAD1, as a functional driver of allelic-imbalanced Copy Number Aberration and genomic instability in TNBC. Additionally, HORMAD1 expression is also a predictive marker of carboplatin response in TNBC. Mechanistically, expression of HORMAD1 in cell lines inhibited Homologous Recombination representing outÐof-context activation of its meiotic function.
Project description:Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to offspring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage, often at the cost of mutation. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to hostparasite interactions. Here, we describe a dual function of translesion PolN in African trypanosomes. Previously we demonstrated that PolN is associated with telomeric sequences and now we show that RNAi-mediated depletion of PolN results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. Depletion of PolN leads to chromosome segregation defects and accumulation of DNA damage. We also show that PolN displays discrete localisation at the nuclear periphery in the absence of exogenous DNA damage. In addition, we demonstrate that PolN depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this translesion DNA polymerase to host immune evasion by antigenic variation.
Project description:Eukaryotic cells respond to DNA damage by arresting the cell cycle and modulating gene expression to ensure efficient DNA repair. The human ATR kinase and its homolog in yeast, MEC1, play central roles in transducing the damage signal. To characterize the role of the Mec1 pathway in modulating the cellular response to DNA damage, we used DNA microarrays to observe genomic expression in Saccharomyces cerevisiae responding to two different DNA-damaging agents. We compared the genome-wide expression patterns of wild-type cells and mutants defective in Mec1 signaling, including mec1, dun1, and crt1 mutants, under normal growth conditions and in response to the methylating-agent methylmethane sulfonate (MMS) and ionizing radiation. Here, we present a comparative analysis of wild-type and mutant cells responding to these DNA-damaging agents, and identify specific features of the gene expression responses that are dependent on the Mec1 pathway. Among the hundreds of genes whose expression was affected by Mec1p, one set of genes appears to represent an MEC1-dependent expression signature of DNA damage. Other aspects of the genomic responses were independent of Mec1p, and likely independent of DNA damage, suggesting the pleiotropic effects of MMS and ionizing radiation. The complete data set as well as supplemental materials is available at http://www-genome.stanford.edu/mec1 Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Using regression correlation
Project description:We investigated how yeast cells deficient in performing homologous recombination-mediated DNA repair due to a deletion of the critical RAD52 gene respond to irreparable DNA damage inflicted by genotoxic treatment commonly applied in cancer therapy (camptothecin and irradiation). We found that upon persistence of irreparable DNA damage, yeast rad52 mutants readily undergo checkpoint adaptation accompanied by the acquisition of resistance to further genotoxic insults as well as the development of aneuploidy. Together, our findings can be used to elucidate how repair-defective cancer cells can become treatment-resistant thereby providing a way to target these resistant cell clones by tackling their aneuploidy-associated phenotypes. To investigate these characteristics commonly present in aneuploid cells in our experimental set-up, we treated yeast cells with genotoxic agents and performed whole genome sequencing. We could identify frequent whole chromosome loss events manifesting in a sensitivity of cells to aneuploidy-targeting agents.
Project description:ATM plays a central role in the cellular response to DNA damage and ATM alterations are common in several tumor types including bladder cancer. However, the specific impact of ATM alterations on therapy response in bladder cancer is uncertain. Here, we combine preclinical modeling and clinical analyses to comprehensively define the impact of ATM alterations in bladder cancer. We show that ATM loss is sufficient to increase sensitivity to DNA damaging agents including cisplatin and radiation. Furthermore, ATM loss drives sensitivity to DNA repair targeted agents including PARP and ATR inhibitors. ATM loss alters the immune microenvironment and improves anti-PD1 response in preclinical bladder models but is not associated with improved anti-PD1/PD-L1 response in clinical cohorts. Finally, we show that ATM expression by IHC is strongly correlated with response to chemoradiotherapy. Together these data define a potential role for ATM as a predictive biomarker in bladder cancer.
Project description:BRD4 functions as an epigenetic reader and plays a crucial role in regulating transcription and genome stability. Dysregulation of BRD4 is frequently observed in various human cancers. However, the molecular details of BRD4 regulation remain largely unknown. Here, we report that PRMT2- and PRMT4-mediated arginine methylation is pivotal for BRD4-dependent transcription, DNA repair, and tumor growth. Specifically, PRMT2/4 interact with and methylates BRD4 at R179, R181, and R183. This arginine methylation selectively controls a transcriptional program by promoting BRD4 enrichment at the hyper-acetylated chromatin regions. Moreover, BRD4 arginine methylation is induced by DNA damage and thereby promotes its binding to chromatin for DNA repair. Deficiency in BRD4 arginine methylation significantly suppresses tumor growth and sensitizes cells to BET inhibitors and DNA damaging agents. Therefore, our findings reveal an arginine methylation-dependent regulatory mechanism of BRD4 function and highlight targeting PRMT2/4 for better anti-tumor effect of BET inhibitors and DNA damaging agents.
Project description:Genomic instability is one of the hallmarks of cancer. Several chemotherapeutic drugs and radiotherapy induce DNA damage to prevent cancer cell replication. Cells in turn activate different DNA damage response (DDR) pathways to either repair the damage or induce cell death. These DDR pathways also elicit metabolic alterations which can play a significant role in the proper functioning of the cells. The understanding of these metabolic effects resulting from different types of DNA damage and repair mechanisms is currently lacking. In this study, we used NMR metabolomics to identify metabolic pathways which are altered in response to different DNA damaging agents. By comparing the metabolic responses in MCF-7 cells, we identified the activation of poly (ADP-ribose) polymerase (PARP) in methyl methanesulfonate (MMS)-induced DNA damage. PARP activation led to a significant depletion of NAD+. PARP inhibition using veliparib (ABT-888) was able to successfully restore the NAD+ levels in MMS-treated cells. In addition, double strand break induction by MMS and veliparib exhibited similar metabolic responses as zeocin, suggesting an application of metabolomics to classify the types of DNA damage responses. This prediction was validated by studying the metabolic responses elicited by radiation. Our findings indicate that cancer cell metabolic responses depend on the type of DNA damage responses and can also be used to classify the type of DNA damage.
Project description:Treatment of cells with DNA damaging agents leads to large-scale gene expression changes. Proper transcriptional regulation is important for cells to arrest, repair damage and adjust cellular processes such as metabolism in order to survive the damaging assault. Damage-induced transcription is a highly regulated response. This study establishes a novel role for two factors, Snf1 and Rad23, in regulation of the UV-induced transcriptional response.