Project description:The first described feedback loop of the Arabidopsis circadian clock is based on reciprocal regulation between TOC1 and CCA1/LHY. CCA1 and LHY are MYB transcription factors that bind directly to the TOC1 promoter to negatively regulate its expression. Conversely, the activity of TOC1 has remained less well characterized. Genetic data supports that TOC1 is necessary for the reactivation of CCA1/LHY, but there is little description of its biochemical function. Here we show that TOC1 occupies specific genomic regions in the CCA1 and LHY promoters. Purified TOC1 binds directly to DNA through its CCT domain, which is similar to known DNA binding domains. Chemical induction and transient overexpression of TOC1 in Arabidopsis seedlings cause repression of CCA1/LHY expression demonstrating that TOC1 can repress direct targets, and mutation or deletion of the CCT domain prevents this repression showing that DNA binding is necessary for TOC1 action. Furthermore, we use the Gal4/UAS system in Arabidopsis to show that TOC1 acts as a general transcriptional repressor, and that repression activity is in the Pseudoreceiver (PR) domain of the protein. To identify the genes regulated by TOC1 on a genomic scale, we couple TOC1 chemical induction with microarray analysis and identify new potential TOC1 targets and output pathways. Together these results define the biochemical action of the core clock protein TOC1 and refine our perspective on how plant clocks function. Keywords: Expression profiling by array
Project description:In many organisms, the circadian clock is composed of functionally coupled morning and evening oscillators that regulate the bouts of dawn and dusk activity. In Arabidopsis, oscillator coupling relies on a core loop in which the evening oscillator component TOC1 was proposed to activate a subset of morning-expressed oscillator genes. Our systems-biological approach overturns the current view of the Arabidopsis circadian clock showing that TOC1 does not function as an activator but as a timely-controlled general repressor of morning and evening oscillator components. Repression occurs through rhythmic binding to the promoters of all oscillator genes, suggesting a previously unexpected direct connection between the morning and evening loops. Examination of TOC1 genome-wide binding using TOC1 Minigene (TMG) seedlings expressing the genomic fragment of TOC1 fused to the Yellow Fluorescent Protein in a toc1-2 mutant background (TMG-YFP/toc1-2 seedlings) grown under LD cycles (12h light:12h dark).
Project description:Transcriptional profiling of Arabidopsis wild-type (Col0) control seedlings with corresponding mutant seedlings is performed using Aligent's Whole Arabidopsis Gene Expression Microarray (G2519F, V4, 4x44K).
Project description:Transcriptional profiling of Arabidopsis wild-type (Col0) control flower buds or seedlings with corresponding mutant flower buds or seedlings is performed using Aligent's Whole Arabidopsis Gene Expression Microarray (G2519F, V4, 4x44K).
Project description:The first described feedback loop of the Arabidopsis circadian clock is based on reciprocal regulation between TOC1 and CCA1/LHY. CCA1 and LHY are MYB transcription factors that bind directly to the TOC1 promoter to negatively regulate its expression. Conversely, the activity of TOC1 has remained less well characterized. Genetic data supports that TOC1 is necessary for the reactivation of CCA1/LHY, but there is little description of its biochemical function. Here we show that TOC1 occupies specific genomic regions in the CCA1 and LHY promoters. Purified TOC1 binds directly to DNA through its CCT domain, which is similar to known DNA binding domains. Chemical induction and transient overexpression of TOC1 in Arabidopsis seedlings cause repression of CCA1/LHY expression demonstrating that TOC1 can repress direct targets, and mutation or deletion of the CCT domain prevents this repression showing that DNA binding is necessary for TOC1 action. Furthermore, we use the Gal4/UAS system in Arabidopsis to show that TOC1 acts as a general transcriptional repressor, and that repression activity is in the Pseudoreceiver (PR) domain of the protein. To identify the genes regulated by TOC1 on a genomic scale, we couple TOC1 chemical induction with microarray analysis and identify new potential TOC1 targets and output pathways. Together these results define the biochemical action of the core clock protein TOC1 and refine our perspective on how plant clocks function. Keywords: Expression profiling by array wild type (Col-0) and ALC::TOC1 were sown on Murashige-Skoog with 0.8% agar, stratified for 48 hours and grown in12:12 light:dark (LD) for 12 days and either left in LD or transferred to constant light (LL) and then grown for one more day before the start of the experiment. Tissue was submerged in Murashige-Skoog media supplemented with 2.5% ethanol or no ethanol (mock) and with 20mM MG132 for 3 hours and harvested at ZT1. Three replicates each of the seedlings were collected and frozen in liquid nitrogen.