Project description:The circadian clock is comprised of proteins that form negative feedback loops, which regulate the timing of global gene expression in a coordinated 24 hour cycle. As a result, the plant circadian clock is responsible for regulating numerous physiological processes central to growth and survival. To date, most plant circadian clock studies have relied on diurnal transcriptome changes to elucidate molecular connections between the circadian clock and observable phenotypes in wild-type plants. Here, we have combined high-throughput RNA-sequencing and mass spectrometry to comparatively characterize the lhycca1, prr7prr9, gi and toc1 circadian clock mutant rosette transcriptome and proteome at the end-of-day and end-of-night.