Project description:Anoxybacillus kamchatkensis G10 is a spore-forming thermophilic bacterium isolated from a hot spring in Indonesia. Here, we report the draft genome sequence of A. kamchatkensis G10 that may reveal insights into aerobic/anaerobic metabolisms and carbon utilization in moderate thermophiles.
Project description:By comparing the gene expression profiling in Anoxybacillus sp. SK 3-4 with and without aluminum exposure, the sets of gene up-regulated and down-regulated by aluminum were identified. The function of genes or proteins induced under these conditions can a reflection of the mechanism of resistance. Transcriptome profiling of Anoxybacillus sp. SK 3-4 treated by aluminum would allow a better understanding of the gene involving in tolerance and removal of aluminum.
Project description:By comparing the gene expression profiling in Anoxybacillus sp. SK 3-4 with and without aluminum exposure, the sets of gene up-regulated and down-regulated by aluminum were identified. The function of genes or proteins induced under these conditions can a reflection of the mechanism of resistance. Transcriptome profiling of Anoxybacillus sp. SK 3-4 treated by aluminum would allow a better understanding of the gene involving in tolerance and removal of aluminum. Global transcriptomic response of Anoxybacillus sp. SK 3-4 to aluminum exposure
Project description:Anoxybacillus kamchatkensis NASTPD13 used herein as a source for thermostable alkaline xylanase were isolated from Paudwar Hot Springs, Nepal. NASTPD13 cultured at 60°C, pH 7 and in presence of inorganic (ammonium sulfate) or organic (yeast extract) nitrogen sources, produced maximum xylanase enzyme. Xylanase production in the cultures was monitored by following the ability of culture media to hydrolyze beech wood xylan producing xylooligosaccharide and xylose by thin layer chromatography (TLC). The extracellular xylanase was isolated from optimized A. kamchatkensis NASTPD13 cultures by ammonium sulfate (80%) precipitation; the enriched xylanase preparation was dialyzed and purified using Sephadex G100 column chromatography. The purified xylanaseshowed 11-fold enrichment with a specific activity of 33 U/mg and molecular weight were37 kDa based on SDS-PAGE and PAGE-Zymography. The optimum pH and temperature of purified xylanase was 9.0 and 65°C respectively retainingmore than 50% of its maximal activity over a broad range of pH (6-9) and temperature (30-65°C). With beech wood xylan, the enzyme showed Km 0.7 mg/ml and Vmax 66.64 ?M/min/mg The xylanase described herein is a secretory enzyme produced in large quantities by NASTPD13 and is a novel thermostable, alkaline xylanase with potential biotechnological applications.