Project description:One of the most important vectors of the Brazilian Spotted Fever, the tick Amblyomma aureolatum in Brazil was used in this study. We laboratorial controlled the infection of adult females of A. aureolatum with the virulent brazilian strain Taiacu of Rickettsia rickettsii. The group of ticks was divided into 2 testing groups, group 1 (G1) composed of adult females incubated at 25°C for 3 days and group 2 (G2) composed of adult females incubated at 35°C for 3 days. Right after incubation of both groups, ticks were individually dissected and all internal organs were transferred to RNAlater® Solution (Life Technologies) until gDNA and total RNA simultaneously isolation. A total of 14 ticks of each group were analyzed in two biological replicates (7 ticks each). Dye-swap was also applied to construct the technical replicate of each biological sample
Project description:One of the most important vectors of the Brazilian Spotted Fever, the tick Amblyomma aureolatum in Brazil was used in this study. We laboratorial controlled the infection of adult females of A. aureolatum with the virulent brazilian strain Taiacu of Rickettsia rickettsii. The group of ticks was divided into 2 testing groups, group 2 (G2) composed of adult females incubated at 35°C for 3 days that were not fed after molting to adults and group 3 (G3) composed of adult females fed on its favorite natural host, the dog (Canis familiaris) also for 3 days. Right after incubation or feeding, ticks were individually dissected and all internal organs were transferred to RNAlater® Solution (Life Technologies) until gDNA and total RNA simultaneously isolation. A total of 14 ticks of each group were analyzed in two biological replicates (7 ticks each). Dye-swap was also applied to construct the technical replicate of each biological sample
Project description:Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging disease with significant mortality. This obligate, gram-negative intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of R conorii –infected primary HUVECs vs those stimulated with LPS alone.
Project description:One of the most important vectors of the Brazilian Spotted Fever, the tick Amblyomma aureolatum in Brazil was used in this study. We laboratorial controlled the infection of adult females of A. aureolatum with the virulent brazilian strain Taiacu of Rickettsia rickettsii. The group of ticks was divided into 2 testing groups, group 1 (G1) composed of adult females incubated at 25°C for 3 days and group 2 (G2) composed of adult females incubated at 35°C for 3 days. Right after incubation of both groups, ticks were individually dissected and all internal organs were transferred to RNAlater® Solution (Life Technologies) until gDNA and total RNA simultaneously isolation. A total of 14 ticks of each group were analyzed in two biological replicates (7 ticks each). Dye-swap was also applied to construct the technical replicate of each biological sample total RNA from both experimental samples (G1 and G2) was used for hybridization to dual channel arrays. Two biological replicates were used for each experimental group.
Project description:Members of the spotted fever group rickettsia express four large, surface-exposed autotransporters, at least one of which is a known virulence determinant. Autotransporter translocation to the bacterial outer surface, also known as type V secretion, involves formation of a b-barrel autotransporter domain in the periplasm that inserts into the outer membrane to form a pore through which the N-terminal passenger domain is passed and exposed on the outer surface. Two major surface antigens of Rickettsia rickettsii, are known to be exposed and the passenger domain cleaved from the autotransporter domain. A highly passaged strain of R. rickettsii, Iowa, fails to cleave these autotransporters and is avirulent. We have identified a putative peptidase, truncated in the Iowa strain, that when reconstituted into Iowa restores appropriate processing of the autotransporters as well as restoring a modest degree of virulence.
Project description:One of the most important vectors of the Brazilian Spotted Fever, the tick Amblyomma aureolatum in Brazil was used in this study. We laboratorial controlled the infection of adult females of A. aureolatum with the virulent brazilian strain Taiacu of Rickettsia rickettsii. The group of ticks was divided into 2 testing groups, group 2 (G2) composed of adult females incubated at 35°C for 3 days that were not fed after molting to adults and group 3 (G3) composed of adult females fed on its favorite natural host, the dog (Canis familiaris) also for 3 days. Right after incubation or feeding, ticks were individually dissected and all internal organs were transferred to RNAlater® Solution (Life Technologies) until gDNA and total RNA simultaneously isolation. A total of 14 ticks of each group were analyzed in two biological replicates (7 ticks each). Dye-swap was also applied to construct the technical replicate of each biological sample total RNA from both experimental samples (G2 and G3) was used for hybridization to dual channel arrays. Two biological replicates were used for each experimental group.
Project description:Gram-negative bacteria in the order Rickettsiales are obligate intracellular parasites that cause human diseases such typhus and spotted fever. They have evolved a dependence on essential nutrients and metabolites from the host cell as a consequence of extensive genome streamlining. However, it remains largely unknown which nutrients they require and whether their metabolic dependency can be exploited therapeutically. Here, we describe a genetic rewiring of bacterial isoprenoid biosynthetic pathways in the Rickettsiales that has resulted from reductive genome evolution. We further investigated whether the spotted fever group Rickettsia species Rickettsia parkeri scavenges isoprenoid precursors directly from the host. Using targeted mass spectrometry in uninfected and infected cells, we found decreases in host isoprenoid products and concomitant increases in bacterial isoprenoid metabolites. Additionally, we report that bacterial growth is prohibited by inhibition of the host isoprenoid pathway with the statins class of drugs. We show that growth inhibition correlates with changes in bacterial size and shape that mimic those caused by antibiotics that inhibit peptidoglycan biosynthesis, suggesting statins inhibit cell wall synthesis. Altogether, our results describe an Achilles' heel of obligate intracellular pathogens that can be exploited with host-targeted therapeutics that interfere with metabolic pathways required for bacterial growth.
Project description:Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging disease with significant mortality. This obligate, gram-negative intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of R conorii â??infected primary HUVECs vs those stimulated with LPS alone.
Project description:We have previously reported that Rickettsia conorii and Rickettsia montanensis have distinct intracellular fates within THP-1 macrophages, suggesting that the ability to proliferate within macrophages may be a distinguishable factor between pathogenic and non-pathogenic Spotted fever group (SFG) members. To start unraveling the molecular mechanisms underlying the capacity (or not) of SFG Rickettsia to establish their replicative niche in macrophages, we have herein profiled the host proteomic alterations resulted by the infection of THP-1 macrophages with R. conorii and R. montanensis using a high throughput quantitative proteomics approach (SWATH-MS). Our results revealed that these two members of SFG Rickettsia with distinct pathogenicity attributes for humans, trigger differential proteomic signatures in macrophage-like cells. Although infection by both rickettsial species resulted in a lower abundance of enzymes of glycolysis and pentose phosphate pathway, the pathogenic R. conorii specifically induced the accumulation of several enzymes of the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid -oxidation and glutaminolysis, as well as of several inner and outer membrane mitochondrial transporters. These results suggest a profound metabolic rewriting of macrophages by R. conorii towards a metabolic signature of an M2-like (anti-inflammatory) activation program. Moreover, our results revealed that several subunits forming the proteasome and immunoproteasome are found in lower abundance upon infection with both rickettsial species, which may help bacteria to escape immune surveillance. Remarkably, R. conorii-infection specifically induced the accumulation of several host proteins implicated in protein processing and quality control in ER, suggesting that this pathogenic Rickettsia may be able to compensate the accumulation of misfolded proteins by increasing the ER protein folding capacity and subsequently restore host cell homeostasis. This work reveals novel aspects of macrophage-Rickettsia interactions, expanding our knowledge of how pathogenic rickettsiae explore host cells to their advantage.