Project description:EZH2 plays an important role in stem cell renewal and maintenance by inducing gene silencing via its histone methyltransferase activity. Previously, we showed EZH2 downregulation markedly enhances neuron differentiation of human mesenchymal stem cells (hMSCs). To understand how EZH2 regulates neuron differentiation of hMSCs, we wanted to identify the target genes of EZH2. For this reasons we performed ChIP-on-chip experiments using specific EZH2 antibodies followed by a human promoter array for the whole human genome. The 3A6-hMSCs were differentiated into neuron for 5 days, and then 109 cells were harvested for the ChIP-on-chip assay. The procedure was based on the manufacturer's instructions (NimbleGen).
Project description:EZH2 plays an important role in stem cell renewal and maintenance by inducing gene silencing via its histone methyltransferase activity. Previously, we showed EZH2 downregulation markedly enhances neuron differentiation of human mesenchymal stem cells (hMSCs). To understand how EZH2 regulates neuron differentiation of hMSCs, we wanted to identify the target genes of EZH2. For this reasons we performed ChIP-on-chip experiments using specific EZH2 antibodies followed by a human promoter array for the whole human genome.
Project description:EZH2 plays an important role in stem cell renewal and maintenance by inducing gene silencing via its histone methyltransferase activity. EZH2 downregulation markedly enhances neuron differentiation of human mesenchymal stem cells (hMSCs)chromatin at promoters of EZH2 target genes. comparison of knockdown EZH2 of hMSCs vs hMSCs
Project description:EZH2 plays an important role in stem cell renewal and maintenance by inducing gene silencing via its histone methyltransferase activity. EZH2 downregulation markedly enhances neuron differentiation of human mesenchymal stem cells (hMSCs)chromatin at promoters of EZH2 target genes.
Project description:Long non-coding RNAs profiling of human mesenchymal stem cells comparing undifferentiated HMSCs with differentiated HMSCs during chondrogenesis. The chondrogenic differentiation of HMSCs was induced by chondrogenic medium. The chondrogenic marker genes (Col2a1, Sox9 and ACAN) has been detected upregulating during this process by Q-PCR. The aim of this study is to determine key lncRNAs regulating the chondrogenic differentiation process.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.