Project description:The Structure of Bacterial Communities and Its Chemoautotrophic Players in Sulfur-rich Sediments of Shallow Water HTVs off Kueishan Island, Taiwan
Project description:At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition and in situ protein expression of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea).
Project description:Iron-sulfur minerals such as pyrite are found in many marine benthic habitats. At deep-sea hydrothermal vent sites they occur as massive sulfide chimneys. Hydrothermal chimneys formed by mineral precipitation from reduced vent fluids upon mixing with cold oxygenated sea water. While microorganisms inhabiting actively venting chimneys and utilizing reduced compounds dissolved in the fluids for energy generation are well studied, only little is known about the microorganisms inhabiting inactive sulfide chimneys. We performed a comprehensive meta-proteogenomic analysis combined with radiometric dating to investigate the diversity and function of microbial communities found on inactive sulfide chimneys of different ages from the Manus Basin (SW Pacific). Our study sheds light on potential lifestyles and ecological niches of yet poorly described bacterial clades dominating inactive chimney communities.
Project description:The Lucinidae is a large family of marine bivalves. They occur in diverse habitats from shallow-water seagrass sediments to deep-sea hydrothermal vents. All members of this family so far investigated host intracellular sulfur-oxidizing symbionts that belong to the Gammaproteobacteria. We recently discovered the capability for nitrogen fixation in draft genomes of the symbionts of Loripes lucinalis from the Bay of Fetovaia, Elba, Italy. With proteomics, we investigated whether the genes for nitrogen fixation are expressed by the symbionts.