Project description:The purpose of this study was to assess the preliminary antitumor activity, safety and tolerability of tepotinib in combination with cetuximab in participants with RAS/BRAF wild-type left-sided Metastatic Colorectal Cancer (mCRC) having acquired resistance to anti-epidermal growth factor receptor (EGFR) antibody targeted therapy due to mesenchymal epithelial transition (MET) amplification.
Project description:This SuperSeries is composed of the following subset Series: GSE12811: CAMK1D amplification implicated in epithelial-mesenchymal transition in basal-like breast cancer (expr) GSE12813: CAMK1D amplification implicated in epithelial-mesenchymal transition in basal-like breast cancer (aCGH) Refer to individual Series
Project description:Epithelial-Mesenchymal Transition (EMT) is thought to contribute to cancer metastasis, but its underlying mechanisms are not well understood. To define early steps in this cellular transformation, we analyzed human mammary epithelial cells with tightly regulated expression of Snail-1, a master regulator of EMT. Following Snail-1 induction, epithelial markers were repressed within 6 hours and mesenchymal genes induced at 24 hours. Snail-1 binding to its target promoters was transient (6-48 hours) despite continued protein expression and it was followed by both transient and long-lasting chromatin changes.
Project description:Epithelial-Mesenchymal Transition (EMT) is thought to contribute to cancer metastasis, but its underlying mechanisms are not well understood. To define early steps in this cellular transformation, we analyzed human mammary epithelial cells with tightly regulated expression of Snail-1, a master regulator of EMT. Following Snail-1 induction, epithelial markers were repressed within 6 hours and mesenchymal genes induced at 24 hours. Snail-1 binding to its target promoters was transient (6-48 hours) despite continued protein expression and it was followed by both transient and long-lasting chromatin changes.
Project description:Human epithelial cancers are defined by a recurrent distribution of specific chromosomal aneuploidies. In our model system, mouse bladder and kidney epithelial cells spontaneously immortalize, transform and become tumorigenic after prolonged culture. We assessed genome and transcriptome alterations and found wide-spread aneuploidy, early transcriptional deregulation, and massive genomic dereguation of the cellular transcriptome. The results reveal a remarkable similarity with genome and transcriptome aberrations detected in human tumorigenesis, hence validating our newly derived cancer models. Epithelial cells were isolated from the C57BL/6 mouse bladder and kidney. These cells underwent spontaneous transformation in culture. We sought to identify the molecuar genomic alterations that occur during the transformation process and to compare these with the changes observed in human bladder and kidney cancers.
Project description:Human epithelial cancers are defined by a recurrent distribution of specific chromosomal aneuploidies. In our model system, mouse bladder and kidney epithelial cells spontaneously immortalize, transform and become tumorigenic after prolonged culture. We assessed genome and transcriptome alterations and found wide-spread aneuploidy, early transcriptional deregulation, and massive genomic dereguation of the cellular transcriptome. The results reveal a remarkable similarity with genome and transcriptome aberrations detected in human tumorigenesis, hence validating our newly derived cancer models. Epithelial cells were isolated from the C57BL/6 mouse bladder and kidney. These cells underwent spontaneous transformation in culture. We sought to identify the molecuar genomic alterations that occur during the transformation process and to compare these with the changes observed in human bladder and kidney cancers.
Project description:Title: CAMK1D amplification implicated in epithelial-mesenchymal transition in basal-like breast cancer Summary: Breast cancer exhibits clinical and molecular heterogeneity, where expression-profiling studies have identified five major molecular subtypes. The basal-like subtype, expressing basal epithelial markers and negative for estrogen receptor (ER), progesterone receptor (PR) and HER2, is associated with higher overall levels of DNA copy number alteration (CNA), specific CNAs (like gain on chromosome 10p), and poor prognosis. Discovering the molecular genetic basis of tumor subtypes may provide new opportunities for therapy. To identify the driver oncogene on 10p associated with basal-like tumors, we analyzed genomic profiles of 172 breast carcinomas. The smallest shared region of gain spanned just seven genes at 10p13, including calcium/calmodulin-dependent protein kinase ID (CAMK1D), functioning in intracellular signaling but not previously linked to cancer. By microarray, CAMK1D was overexpressed when amplified, and by immunohistochemistry exhibited elevated expression in invasive carcinomas compared to carcinoma in situ. Engineered overexpression of CAMK1D in non-tumorigenic breast epithelial cells led to increased cell proliferation, and molecular and phenotypic alterations indicative of epithelial-mesenchymal transition (EMT), including loss of cell-cell adhesions and increased cell migration and invasion. Our findings identify CAMK1D as a novel amplified oncogene linked to EMT in breast cancer, and as a potential therapeutic target with particular relevance to clinically unfavorable basal-like tumors. Overall design: cDNA microarrays from the Stanford Functional Genomics Facility were used to carry out array-based Comparative Genomic Hybridization (array CGH) analysis of 172 human breast tumor specimens, in comparison to normal female DNA. Map positions for arrayed cDNA clones were assigned using the NCBI genome assembly, accessed through the UCSC genome browser database (NCBI Build 36). The CLuster Along Chromosomes (CLAC) method was used to call DNA gains and losses. Set of arrays that are part of repeated experiments Keywords: Biological Replicate Biological Replicate Computed
Project description:We define how chronic cigarette smoke-induced time-dependent epigenetic alterations can sensitize human bronchial epithelial cells (HBEC) for transformation by a single oncogene. The smoke-induced, chromatin changes include initial repressive polycomb marking of genes later manifesting abnormal DNA methylation by 10 months. At this time, cells manifest epithelial to mesenchymal changes, anchorage-independent growth and upregulated RAS/MAPK signaling with silencing of hyper-methylated genes normally inhibiting these pathways and which are associated with smoking related NSCLC. These cells, in the absence of any driver gene mutations, now transform by introducing a single KRAS mutation and form adeno-squamous lung carcinomas in mice. Thus, epigenetic abnormalities may prime for changing oncogene senescence to addiction for a single key oncogene involved in lung cancer initiation.