Project description:Natural populations of the fruit fly, Drosophila melanogaster, segregate genetic variation that leads to cardiac disease phenotypes. Drosophila is well-known as a model for studying the mechanisms by which human disease genes cause pathology, including heart disease, but it is less well appreciated that they may also model the genetic architecture of disease, since flies presumably also have diseases that have a genetic basis. It is reasoned that most of these aberrant inbred line effects would be due to capture of rare variants of large effect as homozygotes, allowing the variants to be mapped rapidly using contemporary genomic approaches. In order to map the genetic variants in flies, we used single feature polymorphism (SFP) analysis to contrast the genome-wide genotype frequencies between pools of flies with aberrant and normal heart phenotype. SFP analysis is an indirect method for genome-wide genotyping that utilizes differential hybridization of genomic DNA to probes on a DNA chip that was initially designed for gene expression profiling, but can be used for species where genotyping chips are not available.
Project description:Thomas Hunt Morgan and colleagues identified variation in gene copy number in Drosophila in the 1920s and 1930s and linked such variation to phenotypic differences [Bridges, C. B. (1936) Science 83, 210]. Yet the extent of variation in the number of chromosomes, chromosomal regions, or gene copies, and the importance of this variation within species, remain poorly understood. Here, we focus on copy-number variation in Drosophila melanogaster. We characterize copy-number polymorphism (CNP) across genomic regions, and we contrast patterns to infer the evolutionary processes acting on this variation. Copy-number variation in D. melanogaster is non-randomly distributed, presumably due to a mutational bias produced by tandem repeats or other mechanisms. Comparisons of coding and noncoding CNPs, however, reveal a strong effect of purifying selection in the removal of structural variation from functionally constrained regions. Most patterns of CNP in D. melanogaster suggest that negative selection and mutational biases are the primary agents responsible for shaping structural variation. Keywords: comparative genomic hybridization
Project description:Cytosine methylation in the genome of Drosophila melanogaster has been elusive and controversial: methylcytosine has been detected at very low levels in early embryos, but the genomic location and function of methylation has not been established. We have mapped cytosine methylation genomewide in Stage 5 Drosophila embryo DNA by combining immuno-enrichment for 5-methylcytosine, bisulfite conversion, and deep sequencing. Unlike methylation patterns observed in other eukaryotic species, methylation in Drosophila is punctate and highly strand-asymmetrical; we confirmed this by direct PCR amplification and sequencing of bisulfite-converted DNA. Despite the locally asymmetric nature of methylation, large-scale patterns of methylation are symmetric. Methylated regions make up ~1% of the genome, and within these regions methylation of individual cytosines averages 2-10%. Methylation is concentrated in specific 5-base sequence motifs that are CA- and CT-rich but depleted of guanine. It is depleted from promoters, coding sequences, and most retrotransposons, and enriched in introns and in certain simple sequence repeats containing the commonly methylated motifs. Comparison with available gene expression data indicates that methylation in a gene is associated with lower expression; the X chromosome, which is subject to gene dosage compensation, is more densely methylated than the autosomes. This study firmly establishes the presence of cytosine methylation in Drosophila; the temporal overlap of methylation with the maternal-zygotic transition raises the possibility that methylation participates in the transition to zygotic gene expression. To enrich for rare cytosine methylation in Drosophila at embryonic Stage 5 (2-3 hours post-fertilization), we enriched sonicated Stage 5 genomic DNA for methylcytosine by immunoprecipitation with antibody to 5-methylcytosine. The immunoprecipitated DNA was then bisulfite converted and Illumina sequenced to obtain direct evidence for the presence of methylation. The presence and extent of DNA methylation was confirmed by Illumina sequencing of bisulfite-converted PCR amplicons.
Project description:Understanding the genotype-phenotype map and how variation at different levels of biological organization is associated are central topics in modern biology. Fast developments in sequencing technologies and other molecular omic tools enable researchers to obtain detailed information on variation at DNA level and on intermediate endophenotypes, such as RNA, proteins and metabolites. This can facilitate our understanding of the link between genotypes and molecular and functional organismal phenotypes. Here, we use the Drosophila melanogaster Genetic Reference Panel and nuclear magnetic resonance (NMR) metabolomics to investigate the ability of the metabolome to predict organismal phenotypes. We performed NMR metabolomics on four replicate pools of male flies from each of 170 different isogenic lines. Our results show that metabolite profiles are variable among the investigated lines and that this variation is highly heritable. Second, we identify genes associated with metabolome variation. Third, using the metabolome gave better prediction accuracies than genomic information for four of five quantitative traits analyzed. Our comprehensive characterization of population-scale diversity of metabolomes and its genetic basis illustrates that metabolites have large potential as predictors of organismal phenotypes. This finding is of great importance, e.g., in human medicine, evolutionary biology and animal and plant breeding.
Project description:These arrays were done in the context of a study to probe gene expression variation across Y-chromosome substitution lines of Drosophila melanogaster Keywords: polymorphism, evolution, chromosome substitution