Project description:Vibrio campbellii BAA-1116 was used as a Harveyi clade model organism to determine the impact of indole signaling on virulence. Gene expression analysis of V. campbellii grown in LB35 broth with or without 100 μM indole revealed that indole decreased: (1) V. campbellii virulence in shrimp and prawn challenge assays, (2) exopolysaccharide production, and (3) swimming motility. The results also indicated that indole inhibits quorum sensing-regulated bioluminescence and blocks the three-channel quorum sensing system by interfering with quorum sensing signal transduction.
Project description:Acyl-homoserine lactone (acyl-HSL) quorum sensing was first discovered in Vibrio fischeri where it serves as a key control element of the seven-gene luminescence (lux) operon. Since this initial discovery, other bacteria have been shown to control hundreds of genes by acyl-HSL quorum sensing. Until recently, it has been difficult to examine the global nature of quorum sensing in V. fischeri. However, the complete genome sequence of V. fischeri is now available and this has enabled us to use transcriptomics to identify quorum-sensing regulated genes and to study the quorum-controlled regulon of this bacterium. In this study, we used DNA microarray technology to identify over two-dozen V. fischeri genes regulated by the quorum sensing signal N-3-oxohexanoyl-L-homoserine lactone (3OC6-HSL). Keywords: Comparison of transcriptome profiles