Project description:C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. During this conversion pluripotency and epithelial-mesenchymal transition genes become dramatically up-regulated and 60% of the cells express Oct4 within 2 days. C/EBPα acts as a pathbreaker since it transiently makes the chromatin of pluripotency genes more accessible to DNase I. It also induces the expression of the dioxygenase Tet2 and promotes its translocation to the nucleus where it binds to regulatory regions of pluripotency genes that become demethylated following OSKM induction. In line with these findings, overexpression of Tet2 enhances OSKM‐induced B cell reprogramming. Since the enzyme is also required for efficient C/EBPα-induced immune cell conversion, our data suggest that Tet2 provides a mechanistic link between iPSC reprogramming and B cell transdifferentiation. The rapid iPS reprogramming approach described should help to fully elucidate the process and has potential clinical applications. Change in Cebpa genome binding/occupancy, comparing primary B-cells treated with estradiol for 18h to induce C/EBPa to untreated cells.
Project description:C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. During this conversion pluripotency and epithelial-mesenchymal transition genes become dramatically up-regulated and 60% of the cells express Oct4 within 2 days. C/EBPα acts as a pathbreaker since it transiently makes the chromatin of pluripotency genes more accessible to DNase I. It also induces the expression of the dioxygenase Tet2 and promotes its translocation to the nucleus where it binds to regulatory regions of pluripotency genes that become demethylated following OSKM induction. In line with these findings, overexpression of Tet2 enhances OSKM‐induced B cell reprogramming. Since the enzyme is also required for efficient C/EBPα-induced immune cell conversion, our data suggest that Tet2 provides a mechanistic link between iPSC reprogramming and B cell transdifferentiation. The rapid iPS reprogramming approach described should help to fully elucidate the process and has potential clinical applications.
Project description:C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. During this conversion pluripotency and epithelial-mesenchymal transition genes become dramatically up-regulated and 60% of the cells express Oct4 within 2 days. C/EBPα acts as a pathbreaker since it transiently makes the chromatin of pluripotency genes more accessible to DNase I. It also induces the expression of the dioxygenase Tet2 and promotes its translocation to the nucleus where it binds to regulatory regions of pluripotency genes that become demethylated following OSKM induction. In line with these findings, overexpression of Tet2 enhances OSKM‐induced B cell reprogramming. Since the enzyme is also required for efficient C/EBPα-induced immune cell conversion, our data suggest that Tet2 provides a mechanistic link between iPSC reprogramming and B cell transdifferentiation. The rapid iPS reprogramming approach described should help to fully elucidate the process and has potential clinical applications.
Project description:C/EBPα induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem cells (iPSCs) when co-expressed with Oct4, Sox2, Klf4 and Myc (OSKM). However, how C/EBPα accomplishes these effects is unclear. We now found that transient C/EBPα expression followed by OSKM activation induces a 100 fold increase in iPSC reprogramming efficiency, involving 95% of the cells. During this conversion pluripotency and epithelial-mesenchymal transition genes become dramatically up-regulated and 60% of the cells express Oct4 within 2 days. C/EBPα acts as a pathbreaker since it transiently makes the chromatin of pluripotency genes more accessible to DNase I. It also induces the expression of the dioxygenase Tet2 and promotes its translocation to the nucleus where it binds to regulatory regions of pluripotency genes that become demethylated following OSKM induction. In line with these findings, overexpression of Tet2 enhances OSKM‐induced B cell reprogramming. Since the enzyme is also required for efficient C/EBPα-induced immune cell conversion, our data suggest that Tet2 provides a mechanistic link between iPSC reprogramming and B cell transdifferentiation. The rapid iPS reprogramming approach described should help to fully elucidate the process and has potential clinical applications.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.