Project description:We designed an experimental setup to investigate the transcriptomic and proteomic responses of the hyperthermophilic archaeon Pyrococcus furiosus to heat and cold shock. P. furiosus is a model organism for studying microbial adaptation to extreme environments, including deep-sea hydrothermal vents with temperature gradients ranging from 1°C to 400°C. We aimed to simulate critical conditions where P. furiosus cannot grow and to examine the immediate response to thermal stress as well as the recovery process.
Project description:This SuperSeries is composed of the following subset Series: GSE28549: Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus (Phenol vs. Benzoate) GSE30798: Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus (Benzene vs. Acetate) GSE30799: Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus (Benzene vs. Phenol) GSE30801: Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus (Benzene vs. Benzoate) Refer to individual Series
Project description:In this study, we generated allelic knockouts of ATP-dependent RNA ligase (Rnl) in hyperthermophilic archaeon T. kodakarensis and analyze the small RNAs.
Project description:Barophilic growth of the hyperthermophilic methanarchaeon Methanocaldococcus jannaschii occurred when gas-substrate availability did not limit growth. In contrast, when growth was limited by gas transfer, no enhancement of growth was evident and a stress response was exhibited at both high and low pressure. A pressure-induced transcriptional response was evident, regardless of whether growth was enhanced by pressure. High-pressure adaptation of a barophilic organism can thus occur at the transcriptional level, even though the cells are stressed by low substrate availability and do not exhibit accelerated growth. Keywords: stress response, gas substrate limitation, bioreactor volume, high pressure