Project description:The aim of this study was to compare the tomato global transcriptional profiles in response to host attack by ToMV and Fol in order to identify genomic differences and similarities in incompatible interactions between a foliar and a vascular pathogen. In order to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp. lycopersici (Fol) and Tomato Mosaic Virus (ToMV) a transcriptional analysis was performed. Tomato genes differentially expressed upon inoculation with Fol and ToMV were identified at 2 days post-inoculation, using an un-inoculated sample as reference.
Project description:Transcriptome analysis reveals the response mechanism of Frl-mediated resistance to Fusarium oxysporum f. sp. radicis-lycopersici (FORL) infection in tomato
Project description:To compare the genome-wide transcriptional effect of ABA and iSB09 in tomato plants, we performed RNA-seq analysis of mock-, 10 uM ABA- or 20 uM iSB09-treated plants. Differential gene expression analysis between mock- and ABA-treated or iSB09-treated seedlings was done with DESeq2 and genes with an absolute value of log2 fold change (log2FC) > 1 or (log2FC) < -1 and p-adjusted value (padj) < 0.05 were selected. iSB09 upregulated and downregulated genes represent a subset of the ABA-responsive genes, which reflects the activation of PYL1-like and PYL4-like ABA receptors in tomato seedlings.
Project description:Soilborne fungal pathogens cause devastating yield losses, are highly persistent and difficult to control. To culminate infection, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake, but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato plants and immunodepressed mice. The virulence defect of M-NM-^ThapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals. Iron dependent gene expression in Fusarium oxysporum wt and M-NM-^ThapX mutant was measured 1 hour after shifting the mycelia to minimal medium with or without 50 M-NM-<M Fe2(SO4)3. Three independent experiments were performed.
Project description:RNA interference (RNAi) is a widely-used approach to generate virus-resistant transgenic crops. However, durability of RNAi-mediated resistance under extreme field conditions and side-effects of stable RNAi expression have not been thoroughly investigated. Here we performed field trials and molecular characterization of two RNAi-transgenic Solanum lycopersicum lines resistant to Tomato yellow leaf curl virus (TYLCV) disease, the major constraint for tomato cultivation in Cuba and worldwide. In order to determine potential impact of the hairpin RNA transgene expression on tomato genome expression and development, differences in the phenotypes and the transcriptome profiles between the transgenic and non-transgenic plants were examined. Transcriptome profiling revealed a common set of up- and down-regulated tomato genes, which correlated with slight developmental abnormalities in both transgenic lines.