Project description:Corticospinal motor neurons (CSMN) are one specialized class of cortical excitatory neurons, which connect layer Vb of the cortex to the spinal cord. a master transcription factor –Forebrain expressed zinc finger 2 (Fezf2) – has been identified that is necessary for the fate specification of CSMN. Fezf2 alone can cell-autonomously instruct the acquisition of CSMN-specific features when expressed in diverse, permissive cellular contexts, in vivo. In order to understand the molecular logic underlying the acquisition of CSMN traits upon Fezf2 expression, we compared the in vivo gene expression of FACS-purified cortical progenitors that ectopically expressed Fezf2 to control progenitors. We used in utero electroporation to deliver Fezf2GFP or CtrlGFP expression vectors to neocortical progenitors at E14.5, when they primarily generate CPN of the upper layers. Overexpression of Fezf2 in these progenitors is sufficient to instruct a fate-switch resulting in the generation of CSMN and other subtypes of corticofugal projection neurons. Fezf2GFP- and CtrlGFP -electroporated progenitors were FACS-purified at 24 and 48 hours after surgery and acutely profiled by microarrays.
Project description:Corticospinal motor neurons (CSMN) are one specialized class of cortical excitatory neurons, which connect layer Vb of the cortex to the spinal cord. a master transcription factor –Forebrain expressed zinc finger 2 (Fezf2) – has been identified that is necessary for the fate specification of CSMN. Fezf2 alone can cell-autonomously instruct the acquisition of CSMN-specific features when expressed in diverse, permissive cellular contexts, in vivo. In order to understand the molecular logic underlying the acquisition of CSMN traits upon Fezf2 expression, we compared the in vivo gene expression of FACS-purified cortical progenitors that ectopically expressed Fezf2 to control progenitors.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:RNA Sequencing of E14.5 mouse cortical neurospheres in response to Fezf2 over-expression 2 replicates each of GFP-transfected or Fezf2/GFP-transfected E14.5 mouse cortical neurospheres. Paired-end sequencing 101bp.
Project description:The importance of unanchored Ub in innate immunity has been shown only for a limited number of unanchored Ub-interactors. We investigated what additional cellular factors interact with unanchored Ub and whether unanchored Ub plays a broader role in innate immunity. To identify unanchored Ub-interacting factors from murine lungs, we used His-tagged recombinant poly-Ub chains as bait. These chains were mixed with lung tissue lysates and protein complexes were isolated with Ni-NTA beads. Sample elutions were subjected to mass spectrometry (LC-MSMS) analysis.
Project description:BACKGROUND: Long terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes. RESULTS: Using a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time. CONCLUSIONS: All families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.
Project description:Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.We found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.
Project description:House mice (Mus musculus) emit ultrasonic vocalizations (USVs), which are surprisingly complex and have features of bird song, but their functions are not well understood. Previous studies have reported mixed evidence on whether there are sex differences in USV emission, though vocalization rate or other features may depend upon whether potential receivers are of the same or opposite sex. We recorded the USVs of wild-derived adult house mice (F1 of wild-caught Mus musculus musculus), and we compared the vocalizations of males and females in response to a stimulus mouse of the same- or opposite-sex. To detect and quantify vocalizations, we used an algorithm that automatically detects USVs (Automatic Mouse Ultrasound Detector or A-MUD). We found high individual variation in USV emission rates (4 to 2083 elements/10 min trial) and a skewed distribution, with most mice (60%) emitting few (?50) elements. We found no differences in the rates of calling between the sexes overall, but mice of both sexes emitted vocalizations at a higher rate and higher frequencies during opposite- compared to same-sex interactions. We also observed a trend toward higher amplitudes by males when presented with a male compared to a female stimulus. Our results suggest that mice modulate the rate and frequency of vocalizations depending upon the sex of potential receivers.
Project description:This is an investigation of whole genome gene expression level in tissues of mice stimulated by LPS, FK565 or LPS + FK565 in vivo and ex vivo. We show that parenteral administration of a pure synthetic Nod1 ligand, FK565, induces site-specific vascular inflammation in mice, which is prominent in aortic root including aortic valves, slight in aorta and absent in other arteries. The degree of respective vascular inflammation is associated with persistent high expression of proinflammatory chemokine/cytokine genes in each tissue in vivo by microarray analysis, and not with Nod1 expression levels. The ex vivo production of proinflammatory chemokine/cytokine by Nod1 ligand is higher in aortic root than in other arteries from normal murine vascular tissues, and also higher in human coronary artery endothelial cells (HCAEC) than in human pulmonary artery endothelial cells (HPAEC), suggesting that site-specific vascular inflammation is at least in part ascribed to an intrinsic nature of the vascular tissue/cell itself.