Project description:Genotyping arrays are tools for high throughput genotyping, which is required in genome-wide association studies (GWAS). Since the first cucumber genome draft was reported, genetic maps were constructed mainly based on simple-sequence repeats (SSRs) or on combinations of SSRs and other sequence-related amplified polymorphism (SRAP). In this study we developed the first cucumber genotyping array which consisted of 32,864 single nucleotide polymorphisms (SNPs). These markers cover the cucumber genome every 2.1Kb and have parents/F1 hybridizations as a training set. The training set was validated with Fludigm technology and had 98% concordance. The application of the genotyping array was illustrated by constructed a genetic map of 600 cM in length based on recombinant inbred lines (RIL) population of a 9930XGy14 cross of which compromise of 11564 SNPs. The markers collinearity between the genetic map and genome references of the two parents estimated as R2=0.97. Moreover, this comparison supports a translocation in the beginning of chromosome 5 that occurred in the lineage of 9930 and Gy14 as well as local variation in the recombination rate. We also used the array to investigate the local allele frequencies along the cucumber genome and found specific region with segregation distortions. We believe that the genotyping array together with the training set would be a powerful tool in applications such as quantitative-trait loci (QTL) analysis and GWAS.
Project description:Ethylene, as a signaling hormone molecule, is proved to have essential role in the process of root development. In the present study, cucumber (Cucumis sativus L.) seedlings were employed to estimate differentially expressed proteins (DEPs) during the adventitious rooting using iTRAQ technique and proteomics analysis. Out of the 5014 DEPs, 115 DEPs were considered as identified proteins, and among them, 24 DEPs are interesting proteins abundance.
Project description:Cucumber (Cucumis sativus L.) fruit is a type of fleshy fruit that is harvested immaturely. Early fruit development directly determines the final fruit length and diameter, and consequently the fruit yield and quality. Different cucumber varieties display huge variations of fruit length, but how fruit length is determined at the molecular level remains poorly understood. To understand the genes and gene networks that regulate fruit length in cucumber, high throughout RNA-seq data were used to compare the transcriptomes of early fruit from two near isogenic lines with different fruit lengths. 3955 genes were found to be differentially expressed, among which 2368 genes were significantly up-regulated and 1587 down-regulated in the line with long fruit. Microtubule and cell cycle related genes were dramatically activated in the long fruit, and transcription factors were implicated in the fruit length regulation in cucumber. Thus, our results built a foundation to dissect the molecular mechanism of fruit length control in cucumber, a key agricultural trait of significant economic importance. Comparative analysis of fruit from two near-isogenic lines, 408 (long fruit) and 409 (short fruit), was employed to discover genes and networks that regulate the fruit length. Two biological replicates were used from each line.
Project description:Cucumber (Cucumis sativus L.) fruit is a type of fleshy fruit that is harvested immaturely. Early fruit development directly determines the final fruit length and diameter, and consequently the fruit yield and quality. Different cucumber varieties display huge variations of fruit length, but how fruit length is determined at the molecular level remains poorly understood. To understand the genes and gene networks that regulate fruit length in cucumber, high throughout RNA-seq data were used to compare the transcriptomes of early fruit from two near isogenic lines with different fruit lengths. 3955 genes were found to be differentially expressed, among which 2368 genes were significantly up-regulated and 1587 down-regulated in the line with long fruit. Microtubule and cell cycle related genes were dramatically activated in the long fruit, and transcription factors were implicated in the fruit length regulation in cucumber. Thus, our results built a foundation to dissect the molecular mechanism of fruit length control in cucumber, a key agricultural trait of significant economic importance.
Project description:The successful fusion of sperms and eggs need firstly the reception of pollens by stigmatic papillae, and then the unobstructed transmitting tract (TT) providing an extension channel for pollen tubes carrying with sperm cells. However, the genes involved in transmitting tract specification and cavity formation in cucumber remained largely unknown. Here, we characterized the bHLH gene, Cucumis sativus SPATULA (CsSPT) and its redundant function with Cucumis sativus ALCATRAZ (CsALC) in TT development and stigma convergence in cucumber.
Project description:Background. Ovary culture has been a useful way to generate double haploid (DH) plant in cucumber (Cucumis sativus L.). However, the rate of embryo induction and the ability for induced embryo to grow into normal embryo are quite low. Moreover, the s mechanism of cucumber embryogenesis remains ambiguous. In this study, the molecular basis for cucumber embryogenesis was explored to set up basis for a more efficient ovary culture method. Differentially expressed genes during embryogenesis process, including the early stages of embryo formation, embryo maturation and shoot formation, were investigated using transcriptomic sequencing. Methods. Based on the cytological observation of cucumber ovary culture, the ovary culture can be divided into three stages:early embryo development, embryo maturation (from pre-embryos to cotyledon embryos) and the shoot formation stage. six key time points were selected for transcriptome sequencing and analysis. Results. We firstly conducted cytological observations which suggest that cell enlargement is the symbol for gametophytes to switch to sporophyte development pathway during early embryogenesis stage. In this stage, RNA-seq revealed 3468 up-regulated genes, including hormone signal transduction genes, hormone response genes and stress-induced genes. The reported embryogenesis-related genes BBM, HSP90 and AGL were also actively expressed during this stage. The total 480 genes that function in protein complex binding, microtubule binding, tetrapyrrole binding, tubulin binding and other microtubule activities were continuously up-regulated during the embryo maturation stage, indicating that the cytoskeleton structure was continuously being built and maintained by the action of microtubule-binding proteins and enzyme modification during embryo development. In shoot formation stage, 1383 genes were up-regulated, which were mainly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, phenylalanine metabolism, and starch and sucrose metabolism. The shoot formation stage might be regulated by 6 transcription factors that contained a B3 domain, 9 genes in the AP2/ERF family and 2 genes encoded WUS homologous domain proteins. Conclusions. These findings offer a valuable framework for explaining the transcriptional regulatory mechanism underlying embryogenesis during cucumber ovary culture.
Project description:Plant viruses are a major threat for a wide range of host species, causing substantial losses in agriculture. Particularly, Cucumber mosaic virus (CMV) evokes severe symptoms, thus dramatically limiting yield. Activation of plant immunity is associated with changes in the gene expression and consequently, cellular proteome to ensure virus resistance. Proteomics proved to be an extremely valuable tool for discovering multiple targets for the rational design of plant protection strategies. Herein, we studied two cultivars of cucumber (Cucumis sativus) resistant ´Heliana´ and susceptible ´Vanda´. Plant cotyledons were mechanically inoculated with CMV isolate PK1, and systemic leaves were harvested at 33 days post-inoculation. Upon protein extraction and filter-aided sample preparations, peptides were profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility enhanced mass spectrometry. From 1,516 reproducibly quantified proteins using label-free approach, 133 were differentially abundant among genotypes or treatments by strict statistic and effect size criteria. Pigments and hydrogen peroxide measurements corroborated proteomic findings. Advanced bioinformatics revealed a modular network of affected host proteins. Direct comparison of both genotypes in the uninfected state highlighted more abundant photosynthetic and development-related proteins in resistant cucumber cultivar. Long-term CMV infection showed worse preservation of energy processes and less robust translation in susceptible cultivar versus resistant genotype. Contrary, susceptible cultivar had numerous more abundant stress and defense-related proteins. We proposed promising targets for functional validation in transgenic lines a step toward durable virus resistance in cucurbits and other crops.