Project description:Deletion of yedL was found to signifcantly decrease type three secretion in EHEC O157:H7. Transcriptional profiles of Escherichia coli O157: H7 and the isogenic yedL mutant were generated and compared.
Project description:Deletion of yhaO was found to signifcantly decrease type three secretion in EHEC O157:H7. Transcriptional profiles of Escherichia coli O157: H7 and the isogenic yhaO mutant were generated and compared.
Project description:Cinnamaldehyde is a natural antimicrobial and has been found to be effective against many foodborne pathogens including Escherichia coli O157:H7. Although its antimicrobial effects have been well investigated, limited information is available on its effects at the molecular level. Sublethal treatment at 200 mg/l cinnamaldehyde inhibited growth of E. coli O157:H7 at 37oC and for ≤ 2 h caused cell elongation, but from 2 to 4 h growth resumed and cells reverted to normal length. To understand this transient behaviour, genome-wide transcriptional analysis of E. coli O157:H7 was performed at 2 and 4 h exposure to cinnamaldehyde. Drastically different gene expression profiles were obtained at 2 and 4 h. At 2 h exposure, cinnamaldehyde induced overexpression of many oxidative stress-related genes, reduced DNA replication, and synthesis of protein, O-antigen and fimbriae. At 4 h, many cinnamaldehyde-induced repressive effects on E. coli O157:H7 gene expressions were reversed and oxidatve stress genes were nolonger differentially expressed.
Project description:The transcriptome of Escherichia coli K-12 has been widely studied over a variety of conditions for the past decade while such studies involving E. coli O157:H7, its pathogenic cousin, are just now being conducted. To better understand the impact of an anaerobic environment on E. coli O157:H7, global transcript levels of strain EDL933 cells grown aerobically were compared to cells grown anaerobically using microarrays.
Project description:Pathogenic biofilms have been associated with persistent infections due to their high resistance to antimicrobial agents. To identify non-toxic biofilm inhibitors for enterohemorrhagic Escherichia coli O157:H7, indole-3-acetaldehyde was used and reduced E. coli O157:H7 biofilm formation. Global transcriptome analyses revealed that indole-3-acetaldehyde most repressed two curli operons, csgBAC and csgDEFG, and induced tryptophanase (tnaAB) in E. coli O157:H7 biofilm cells. Electron microscopy showed that indole-3-acetaldehyde reduced curli production in E. coli O157:H7. Together, this study shows that Actinomycetales are an important resource of biofilm inhibitors as well as antibiotics.
Project description:Transcript abundance in Escherichia coli O157:H7 was determined in the presence or absence of pulsed expression of the small RNA, AsxR.
Project description:The transcriptome of Escherichia coli K-12 has been widely studied over a variety of conditions for the past decade while such studies involving E. coli O157:H7, its pathogenic cousin, are just now being conducted. To better understand the impact of intracellular life within a ruminant and environmental protozoan on E. coli O157:H7, global transcript levels of strain EDL933 cells inside Acanthamoeba were compared to cell grown in the protozoan media (ATCC PYG712) by microarray.
Project description:Escherichia coli O157 presents a number of specific problems in terms of food safety and public health. It has been found that E. coli O157 is more resistant to a number of the stresses encountered during food production such as heat, pH and osmotic shock. This greater resistance is thought to contribute to the low infectious dose of E. coli O157 (<100 organisms). Moreover, E. coli O157 is associated with debilitating conditions such as haemorrhagic colitis and haemoytic uraemic syndrome, particularly in children and the elderly. We have been studying the stress responses of E. coli O157:H7 (Sakai) and comparing with a commensal strain of E. coli K-12, MG1655. We found that E. coli O157 (Sakai) is more sensitive to oxidative stress than MG1655. A microarray study of these strains treated with sub-lethal concentrations (0.5mg/ml) of menadione revealed big differences in their responses. In E. coli O157 (Sakai), 540 genes responded significantly to the treatment compared to 121 genes in MG1655. One surprising finding from the microarray data was the observation that many iron-transport genes were up-regulated in E. coli O157 (Sakai) whereas relatively few were induced in MG1655 despite the fact that the bacteria were grown in a medium containing ample iron. We speculated that the induction of iron transport genes in an iron-rich medium might have contributed to the enhanced killing of E. coli O157 (Sakai) through triggering of a Fenton reaction. We speculated that the difference in sensitivity to oxidative stress might be due to differences in the intracellular iron content of E. coli O157 and MG1655. We found that E. coli O157 contains ~50% more iron than MG1655 and believe that during oxidative stress, this iron is released by damaged proteins. The greater levels of free iron in E. coli O157 will trigger a greater Fenton reaction that can damage the ferric uptake regulator (Fur), resulting in unregulated iron transport. In MG1655, the lower iron content results in a smaller Fenton reaction, enabling the cellular protection systems to limit damage and protect Fur.
Project description:The transcriptome of Escherichia coli K-12 has been widely studied over a variety of conditions for the past decade while such studies involving E. coli O157:H7, its pathogenic cousin, are just now being conducted. To better understand the impact of heat shock on E. coli O157:H7, global transcript levels of strain EDL933 cells shifted from 37°C to 50°C for 15 min were compared to cells left at 37°C using microarrays. Keywords: Stress Response
Project description:The transcriptome of Escherichia coli K-12 has been widely studied over a variety of conditions for the past decade while such studies involving E. coli O157:H7, its pathogenic cousin, are just now being conducted. To better understand the impact of rumen fluid on E. coli O157:H7, global transcript levels of strain EDL933 cells resuspended in heat clarified rumen fluid for 15 min were compared to cells resuspended in fresh LB using microarrays.