Project description:We characterized sperm from the seminal vesicles of male monarch butterflies (Danaus plexippus), in triplicate, identifying 548 high confidence proteins. As with all but the most basal lepidopteran species male monarch butterflies are sperm heteromorphic, producing fertilization competent and anucleate fertilization incompetent sperm morphs. Comparing this data to the sperm proteomes of the Carolina sphinx moth (Manduca sexta) and the fruit fly (Drosophila melanogaster) demonstrated high levels of functional coherence across proteomes, and conservation at the level of protein abundance and post-translational modification within Lepidoptera. Comparative genomic analyses revealed a significant reduction in orthology among Monarch sperm genes relative to the remainder of the genome in non-Lepidopteran insects. A substantial number of sperm proteins were found to be specific to Lepidoptera, lacking detectable homology outside this taxa. These findings are consistent with a burst of genetic novelty in the sperm proteome concurrent with the origin of heteromorphic spermatogenesis early in Lepidoptera evolution.
Project description:MicroRNAs (miRNAs) are involved in post-transcriptional regulation of gene expression. Since several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia. Examination of the small RNA complements pooled across life cycle stages in each of Cameraria ohridella and Pararge aegeria.
Project description:MicroRNAs (miRNAs) are involved in post-transcriptional regulation of gene expression. Since several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia.
2014-11-26 | GSE63644 | GEO
Project description:Anchored hybrid enrichment of Malvaceae
| PRJNA815625 | ENA
Project description:Anchored hybrid enrichment sequencing of Cicadellidae
| PRJNA780295 | ENA
Project description:Anchored Hybrid Enrichment of Himalopsyche martynovi complex
| PRJNA744478 | ENA
Project description:Evolutionary history of butterflies and moths
| PRJNA522250 | ENA
Project description:Anchored Hybrid Enrichment Resolves the Lacunicambarus (Decapoda: Cambaridae) Phylogeny