Project description:Brugia malayi is a parasitic nematode that causes lymphatic filariasis in humans. A total of 178 novel microRNA were identified from short read transcriptional data, which when combined with known Brugia microRNAs yielded a total of 284 microRNA. Of these, 123 microRNA sequences (43%) are differentially expressed over the mammalian life stages of B. malayi that we examined. Putative targets of these microRNA were identified from inversely expressed target clusters that contain valid seed sequences for the corresponding microRNAs. The largest identified cluster is downregulated in adult females and enriched in zinc finger domains, helicase domains, and DNA binding domains suggesting this microRNA cluster may have regulatory control over a large proportion of adult female specific mRNA genes. MicroRNA-like molecules are identified as produced by the Wolbachia endosymbiont, providing evidence for direct nucleic acid-based interdomain communication between filarial nematodes and their bacterial obligate endosymbiont.
Project description:Lymphatic filarial nematodes maintain a mutualistic association with the intracellular bacterium Wolbachia. Wolbachia populations expand following infection of the mammalian host, to support larval growth and development. Utilizing transcriptomic data from Brugia malayi over the first two weeks post-infection, we present an analysis of the biochemical pathways that are involved in Wolbachia population growth and regulation in support of larval development. In Wolbachia, we observe coordinated regulation of carbon metabolism with an alternating pattern of glycolysis and TCA cycle pathways reminiscent of the ‘Warburg effect’. Wolbachia's purine, pyrimidine and haem biosynthesis and Type IV secretion pathways are also upregulated and correlate with the upregulation of the nematode’s DNA replication pathway. In the nematode we observe up-regulation of the autophagy pathway, a key regulator of Wolbachia populations. These findings support a key role for nucleotide and haem provisioning from Wolbachia in support of the larval growth and development of its nematode host.
Project description:Doxycycline treatment affects gene expression in Wolbachia and Brugia malayi adult female worms in vivo Two biological replicates of female RNA used for hybridization, in duplicate, to examine the gene expression changes in Wolbachia and Brugia
Project description:Female worms (Brugia malayi) were collected from infected jirds treated with 2.5 mg/ml tetracycline in drinking water for 7, 14, or 21 days to eliminate the worm's endosymbiont, Wolbachia.<br>Control age matched female worms were recovered from infected jirds given normal water for drinking.<br>The Filarial Nematode Oligonucleotide Array (version 2) was used in hybridization analyses on cDNA generated from extracted total RNA.<br>Each microarray was hybridized with a mixture of control and experimental cDNA differentially labeled with Cy3 and Cy5 in a flip-dye experiment.<br>Gridding and analysis of images were performed using ScanArray v3.0, each spot defined pixel-by-pixel using a modified Mann-Whitney test, and the resulting values processed with Gene-Spring 7.1 software.