Project description:The goal of this study is to identify P. vivax genes whose expression is dependent on the intact spleen in experimental infections in Aotus monkeys.
Project description:In malaria, T cells play a dual role by both restricting parasite growth and mediating immunopathology such as the deadly neuroinflammation called cerebral malaria. During experimental cerebral malaria (ECM), IFN produced by CD4 T cells promotes CD8 T cell sequestration in brain capillaries, resulting in endothelial damage, oedema and death. However the antigen-presenting cells controlling the development of CD4 T cell responses, as well as the antigens recognized by these CD4 T cells, are unknown. Here we used mass spectrometry to characterize the MHC II immunopeptidome presented by dendritic cells during blood stage malaria in C57BL/6 mice. We identified 14 MHC II ligands derived from 13 conserved Plasmodium berghei proteins that we validated in vivo. This work profiles the first MHC II immunopeptidome in a mouse model of blood stage malaria.
Project description:Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito’s immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Keywords: Anopheles gambiae, Plasmodium falciparum, ookinete, invasion, innate immunity
Project description:Comaprision of P.falciparum clinical isolates showing Uncomplicated disease with that shwoing complicated disease(Cerebral malaria) The experiment was designed to try and identify differences if any, at the genome level between P.falciparum isolates from patients with uncomplicated malaria vs. patients with complicated malaria (Cerebral malaria). The emphasis was to highlight possible amplifications/deletions in different regions of the parasite genome.
Project description:Severe malaria encompasses a range of syndromes manifesting systemically or in diverse organs. These are believed to represent the end-stage processes of local parasite sequestration and inflammatory cascades. Classical anti-malarial drugs target parasites only. In treatment of severe disease, adjunctive therapies capable of controlling the inflammatory processes could be beneficial. Innate defense regulator (IDR) peptides display multiple immune modulatory activities. In this study, we assessed peptide IDR-1018, which shows promise as an anti-inflammatory drug, as a lead candidate for adjunctive host-directed therapy of established disease in the P. berghei ANKA model of experimental cerebral malaria (ECM). Intravenously administered IDR-1018 partially protected mice from ECM both prophylactically and in adjunctive treatment with classical anti-malarial drugs. We used transcriptional data from spleens and brains taken early in infection (day 3) of prophylactically treated mice to investigate the protective mechanisms.