Project description:We report on the small RNA profiles of Schistosoma japonicum (S. japonicum) miRNAs using small RNA deep sequencing in the key stages of male-female pairing, gametogenesis, and egg production.
Project description:The gogal of this study is to use RNA-Seq to systematically investigate the dynamics of the liver transcriptome over Schistosoma japonicum infection.
Project description:The gogal of this study is to use RNA-Seq to systematically investigate the dynamics of the liver transcriptome over Schistosoma japonicum infection.
Project description:We report on the small RNA profiles of Schistosoma japonicum (S. japonicum) miRNAs using small RNA deep sequencing in the key stages of male-female pairing, gametogenesis, and egg production. Examination of different miRNAs between males and females in Schistosoma japonicum
Project description:Chinese and Philippine strains of the blood fluke Schistosoma japonicum present clear and distinctive phenotypes in areas of fecundity, pathology, drug sensitivity and immunology. Despite these differences large scale sequencing efforts have focused solely on Chinese mainland strain of the parasite. We have undertaken a comparative genomic hybridisation (CGH) approach to highlight some of the structural differences in the genome of two of the major geographical isolates of S. japonicum. We identified seven distinct regions of the S. japonicum genome that present differential CGH between Chinese and Philippine strains of the blood fluke Schistosoma japonicum, representing either deletion or duplication regions in the Philippine strain. Within these regions, genes that may be related to phenotypical differences are identified and discussed.
Project description:In the complex lifecycle of schistosomes, four developmental stages are closely associated with their definitive hosts: cercaria (infective stage), schistosomula and adult worm (parasitic stages), egg (pathogenic- and pathophoresis-stage). We have examined the gene expression profiles of Schistosoma japonicum in the four developmental stages. Genes with different expression patterns were identified and the information obtained will help indentify new anti-schistosomal intervention targets in the future.