Project description:To study the roles of NWMN_0641, we used microarray to compare the transcriptome of the NWMN_0641 deletion strain with that of the wild-type Staphylococcus aureus Newman strain. Transcriptome of the NWMN_0641 deletion mutant strain and the wild-type Newman strain
Project description:ArlRS is a two-component regulatory system in Staphylococcus aureus. Here we use RNA-sequencing to compare gene expression in a wild-type USA300 strain and an isogenic arlRS mutant.
Project description:MgrA is a global regulator of gene expression in Staphylococcus aureus. Here we use RNA-sequencing to compare gene expression in a wild-type USA300 strain and an isogenic mgrA mutant.
Project description:Young adult fer-15;fem-1 Caenorhabditis elegans were infected with Staphylococcus aureus for 8 h to determine the transcriptional host response to Staphylococcus aureus. Analysis of differential gene expression in C. elegans young adults exposed to two different bacteria: E. coli strain OP50 (control), wild-type Staphylococcus aureus RN6390. Samples were analyzed at 8 hours after exposure to the different bacteria. These studies identified C. elegans genes induced by pathogen infection. Keywords: response to pathogen infection, innate immunity, host-pathogen interactions
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) infections result in more than 200,000 hospitalizations and 10,000 deaths in the United States each year and remain an important medical challenge. To better understand the transcriptome of Staphylococcus aureus USA300 NRS384, a community-acquired MRSA strain, we have conducted an RNA-Seq experiment on WT samples.
Project description:Vancomycin-intermediate Staphylococcus aureus (VISA) evolve in a strain-specific manner and acquire mutations that lead to alterations in cell wall metabolism that reduce susceptibility to vancomycin. We had earlier isolated several VISA mutant strains of the clinical hVISA strain MM66. This study is aimed at analyzing the metabolome of these mutants in comparison to the parent strain.
Project description:Staphylococcus aureus (S. aureus) is a known pathogen able to infect humans and animals. Human S. aureus isolates are often associated with carriage of Sa3int prophages combined with loss of beta-hemolysin production due to gene disruption, whereas animal isolates are positive for beta-hemolysin associated with absence of Sa3int prophages. Sa3int prophages are known to contribute to staphylococcal fitness and virulence in human host by providing human-specific virulence factors encoded on the prophage genome. Strain-specific differences in regard to phage transfer, lysogenization and induction are attributable to yet unknown staphylococcal factors specifically influencing prophage gene expression. In this work we used tagRNA-sequencing approach to specifically search for these unknown host factors and differences in prophage gene expression. For this purpose, we established a workflow revealing the first direct comparison for differential gene expression analysis on two distinct single-lysogenic S. aureus isolates. Further, global gene expression patterns were investigated in two S. aureus isolates upon mitomycin C treatment and compared to uninduced conditions. This provides new insights into the tightly linked host-phage interaction network.
Project description:MepR is a substrate-responsive repressor of mepR and mepA, which encode itself and a MATE family multidrug efflux pump. Microarray analyses of Staphylococcus aureus SH1000 and its mepR-disrupted derivative revealed changes in expression of many genes in addition to mepR and mepA, notably several involved in virulence Keywords: Staphylococcus aureus, MATE efflux pump, MepR
Project description:Staphylococcus aureus is one of the most important pathogens in humans and animals, multiply resistant strains are increasingly widespread, new agents are needed for the treatment of S. aureus. Rhein, a natural plant product, has potential antimicrobial activity against Staphylococcus aureus. We employed Affymetrix Staphylococcus aureus GeneChipsTM arrays to investigate the global transcriptional profiling of Staphylococcus aureus ATCC25923 treated with rhein. Results provided insight into mechanisms involved in rhein - Staphylococcus aureus interactions. Keywords: rhein response