Project description:We performed whole genome single nucleotide polymorphism (SNP) based analysis of all available Venezuelan equine encephalitis (VEE) virus antigenic complex genomes and developed a high resolution genome-wide SNP microarray. We used the SNP microarray to analyze a broad panel of VEEV isolates, found excellent concordance between array and sequence based genotypes for previously sequenced strains, and genotyped unsequenced strains.
Project description:No vaccines or antivirals are approved against Venezuelan equine encephalitis virus (VEEV) infection in humans. To improve our understanding of VEEV-host interactions, we simultaneously profiled host transcriptome and viral RNA (vRNA) in thousands of single cells during infection of human astrocytes. Host transcription was suppressed, and “superproducer cells” with extreme vRNA abundance and altered transcriptome emerged during the first viral life cycle. Cells with increased structural-to-nonstructural transcript ratio demonstrated upregulation of trafficking genes at later time points. Loss- and gain-of-function experiments confirmed pro- and antiviral host factors. Single-cell deep sequencing analysis identified a viral E3 protein mutation altering host gene expression. Lastly, comparison with data from other viruses highlighted common and unique pathways perturbed by infection across evolutionary scales. This study provides a high-resolution characterization of the cellular response to VEEV infection, identifies candidate targets for antivirals, and establishes a comparative single-cell approach to study the evolution of virus-host interactions.
Project description:Differing from other experimental models, intranasal infection with vaccine strain of Venezuelan equine encephalitis virus, VEEV, (TC83) caused high titer infection in the brain and 90–100% mortality in the C3H/HeN murine model. Intranasal infection with VEEV (TC83) caused persistent viral infection in the brains of mice without functional αβ T-cells (αβ-TCR -/-). While wild-type C57BL/6 mice clear infectious virus in the brain by 13 dpi, αβ-TCR -/- maintain infectious virus in the brain to 92 dpi. To better characterize the susceptibility to disease development in different strains of mice, we have analyzed the gene transcriptomes in the brains of infected mice.
Project description:The high mutation rate of RNA viruses provides viral populations with the ability to adapt to new environments but also makes them vulnerable to extinction due to the deleterious effects of mutations, which is the conceptual basis for the antiviral activity of RNA mutagens. However, there are still gaps in the quantitative understanding of the dynamics between the mutations induced by an RNA mutagen and its effects on viral fitness. To address this, we used Venezuelan Equine Encephalitis Virus (VEEV) and the potent RNA mutagen β-d-N4-hydroxycytidine (NHC) as a model to analyze virus replication competency and mutation frequency following treatment in the total and replication-competent viral populations separately. We found that NHC induced transition mutations in a concentration dependent manner in the total population, while the replication-competent population maintained itself within an increased, yet narrow, mutation spectrum. The incorporation of NHC mainly happened during the positive sense RNA synthesis of VEEV. A growth kinetic analysis of VEEV population treated with NHC pointed to a lower but more diverse distribution in mutational fitness, demonstrating that NHC-induced mutations negatively and broadly affect the fitness of the virus. Together, our study provides mechanistic insight into how RNA mutagens affect viral population landscape and the potential of RNA mutagens as an antiviral strategy for alphaviruses.
Project description:The innate immune protection provided by cationic antimicrobial peptides (CAMPs) has been shown to extend to antiviral activity, with putative mechanisms of action including direct interaction with host cells or pathogen membranes. The lack of therapeutics available for the treatment of viruses such as Venezuelan equine encephalitis virus (VEEV) underscores the urgency of novel strategies for antiviral discovery. American alligator plasma has been shown to exhibit strong in vitro antibacterial activity, and functionalized hydrogel particles have been successfully employed for the identification of specific CAMPs from alligator plasma. Here, a novel bait strategy in which particles were encapsulated in membranes from either healthy or VEEV-infected cells was implemented to identify peptides preferentially targeting infected cells for subsequent evaluation of antiviral activity. Statistical analysis of peptide identification results was used to select five candidate peptides for testing, of which three exhibited a dose-dependent inhibition of VEEV, with one peptide also significantly inhibiting infectious titers. Results suggest our bioprospecting strategy provides a versatile platform that may be adapted for antiviral peptide identification from complex biological samples.
Project description:Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broad panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Finally, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.