Project description:Cerebral palsy (CP) represents a group of non-progressive clinically heterogeneous disorders that are characterized by motor impairment and early age-of-onset, frequently accompanied by co-morbidities. The cause of CP has historically been attributed to environmental stressors resulting in brain damage. While genetic risk factors are also implicated, guidelines for diagnostic assessment of CP do not recommend for routine genetic testing. Given numerous reports of etiologic copy number variations (CNVs) in other neurodevelopmental disorders, we used microarrays to genotype a population-based prospective cohort of children with CP and their parents. Here we identify de novo CNVs in 8/115 (7.0%) CP patients (~1% rate in controls). In four children, large chromosomal abnormalities deemed pathogenic were found, and they were significantly more likely to have severe neuro-motor impairments than those CP subjects without such alterations. Overall the CNV data would have impacted our diagnosis or classification of CP in 11/115 (9.6%) families. Dr. Maryam Oskoui* , Mr. Matthew Gazzellone* , Ms. Bhooma Thiruvahindrapuram , Dr. Mehdi Zarrei , Dr. John Andersen , Dr. John Wei , Dr. Zhouzhi Wang , Dr. Richard Wintle , Dr. Christian Marshall , Dr. Ronald Cohn , Dr. Rosanna Weksberg , Dr. James Stavropoulos , Dr. Darcy Fehlings , Dr. Michael Shevell, Dr. Stephen Scherer. Clinically Relevant Copy Number Variations Detected in Cerebral Palsy. Nature Communications, 2015. Following our rigorous quality control procedure, we successfully genotyped 147 proband samples from individuals with cerebral palsy (81 males and 66 females) and 282 samples obtained from parents (134 males and 148 females). This facilitated the identification of de novo and rare inherited copy number variations of clinical interest.
Project description:Autism spectrum disorder (ASD) and mental retardation (MR) represent clinically distinct neurodevelopmental disorders with a complex genetic etiology. Using microarrays we identified de novo copy number variations in the SHANK2 synaptic scaffolding gene in two unrelated ASD and MR patients; DNA sequencing of SHANK2 revealed additional variants including a de novo nonsense mutation and 7 rare inherited changes. Our findings further link common genes between ASD and intellectual disability.
Project description:The Affymetrix CytoScan HD array is a high resolution SNP platform for studying copy number variations in the human genome. It is widely being used in both clinical and research settings for identifying causative variants as well as interrogating the genome for benign variants. We employed this platform to investigate the risk factor CNVs in trios diagnosed with hemiplegic cerebral palsy. We genotyped 101 unrelated probands and their both parents and compared their genotypes to those of 9,611 population controls, in order to identify rare CNVs (<0.1% frequency) of at least 10 kb in size that might contribute to CP. We uncovered de novo CNVs and Decipher Syndromes in probands. We have identified additional potentially risk factor CNVs impacting the coding sequencing of genes involved in brain functions.
Project description:Cerebral palsy (CP) represents a group of non-progressive clinically heterogeneous disorders that are characterized by motor impairment and early age-of-onset, frequently accompanied by co-morbidities. The cause of CP has historically been attributed to environmental stressors resulting in brain damage. While genetic risk factors are also implicated, guidelines for diagnostic assessment of CP do not recommend for routine genetic testing. Given numerous reports of etiologic copy number variations (CNVs) in other neurodevelopmental disorders, we used microarrays to genotype a population-based prospective cohort of children with CP and their parents. Here we identify de novo CNVs in 8/115 (7.0%) CP patients (~1% rate in controls). In four children, large chromosomal abnormalities deemed pathogenic were found, and they were significantly more likely to have severe neuro-motor impairments than those CP subjects without such alterations. Overall the CNV data would have impacted our diagnosis or classification of CP in 11/115 (9.6%) families. Dr. Maryam Oskoui* , Mr. Matthew Gazzellone* , Ms. Bhooma Thiruvahindrapuram , Dr. Mehdi Zarrei , Dr. John Andersen , Dr. John Wei , Dr. Zhouzhi Wang , Dr. Richard Wintle , Dr. Christian Marshall , Dr. Ronald Cohn , Dr. Rosanna Weksberg , Dr. James Stavropoulos , Dr. Darcy Fehlings , Dr. Michael Shevell, Dr. Stephen Scherer. Clinically Relevant Copy Number Variations Detected in Cerebral Palsy. Nature Communications, 2015.
Project description:Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA). Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features. high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. Only 21 samples with potentially pathogenic CNVs are included in this records
Project description:Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA). Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features.