Project description:We performed RNAseq on total RNA extracted from brains of mice infected with Orientia tsutsugamushi to investigate the transcriptomic signature of this tissue throughout infection.
Project description:We performed NanoString analysis on total RNA extracted from spleens of mice infected with Orientia tsutsugamushi to investigate the transcriptomic signature of these cells throughout infection.
Project description:We performed RNAseq on total RNA extracted from splenic B cells isolated from mice infected with Orientia tsutsugamushi to investigate the dynamic transcriptomic signature of these cells throughout infection. We then performed differential expression analysis, meta-analysis, and gene set enrichment anaylsis using data obtained by RNA-seq of mock infected (D0) and O. tsutsugamushi-infected mice (D4 and D8).
Project description:Emerging and neglected diseases pose challenges as their biology is frequently poorly understood, and genetic tools often do not exist to manipulate the responsible pathogen. Organism agnostic sequencing technologies offer a promising approach to understand the molecular processes underlying these diseases. Here we apply dual RNA-seq to Orientia tsutsugamushi (Ot), an obligate intracellular bacterium and the causative agent of the vector-borne human disease scrub typhus. Half the Ot genome is composed of repetitive DNA, and there is minimal collinearity in gene order between strains. Integrating RNA-seq, comparative genomics, proteomics, and machine learning, we investigated the transcriptional architecture of Ot, including operon structure and non-coding RNAs, and found evidence for wide-spread post-transcriptional antisense regulation. We compared the host response to two clinical isolates and identified distinct immune response networks that are up-regulated in response to each strain, leading to predictions of relative virulence which were confirmed in a mouse infection model. Thus, dual RNA-seq can provide insight into the biology and host-pathogen interactions of a poorly characterized and genetically intractable organism such as Ot.
Project description:Scrub typhus is a life-threatening disease caused by Orientia tsutsugamushi, a bacterium that mainly infects endothelial cells in vitro and in vivo. Evidence suggests that the interaction of O. tsutsugamushi with myeloid cells may play a pivotal role in O. tsutsugamushi infection. We showed here that O. tsutsugamushi intensively replicated within human monocyte-derived macrophages. Bacterial organisms stimulated the expression of a large panel of genes including type I interferon, interferon-stimulated, inflammatory, apoptosis-related genes and induced an M1-type gene response in macrophages. This transcriptional signature was accompanied by functional consequences such as the release of inflammatory cytokines such as Tumor Necrosis Factor and interleukin-gamma. Live O. tsutsugamushi organisms were necessary for type I interferon response and, to a lesser degree, to inflammatory response. As interferon-gamma is known to elicit M1 polarization, we assessed the effect of interferon-gamma on O. tsutsugamushi fate in macrophages. Exogenous interferon-gamma partly inhibited O. tsutsugamushi replication within macrophages. Our results suggest that the inflammatory response induced by O. tsutsugamushi may account for the local and systemic inflammation observed in scrub typhus and that interferon-gamma may be useful as an adjuvant treatment of patients with scrub typhus.