Project description:The ability to produce diacetyl from pyruvate and l-serine was studied in various strains of Pediococcus pentosaceus and Pediococcus acidilactici isolated from cheese. After being incubated on both substrates, only P. pentosaceus produced significant amounts of diacetyl. This property correlated with measurable serine dehydratase activity in cell extracts. A gene encoding the serine dehydratase (dsdA) was identified in P. pentosaceus, and strains that showed no serine dehydratase activity carried mutations that rendered the gene product inactive. A functional dsdA was cloned from P. pentosaceus FAM19132 and expressed in Escherichia coli. The purified recombinant enzyme catalyzed the formation of pyruvate from L- and D-serine and was active at low pH and elevated NaCl concentrations, environmental conditions usually present in cheese. Analysis of the amino acid profiles of culture supernatants from dsdA wild-type and dsdA mutant strains of P. pentosaceus did not show differences in serine levels. In contrast, P. acidilactici degraded serine. Moreover, this species also catabolized threonine and produced alanine and α-aminobutyrate.
Project description:Pediococcus pentosaceus SL4 was isolated from a Korean fermented vegetable product, kimchi. We report here the whole-genome sequence (WGS) of P. pentosaceus SL4. The genome consists of a 1.79-Mb circular chromosome (G+C content of 37.3%) and seven distinct plasmids ranging in size from 4 kb to 50 kb.
Project description:We report the 1.8-Mb genome sequence of Pediococcus pentosaceus strain IE-3, isolated from a dairy effluent sample. The whole-genome sequence of this strain will aid in comparative genomics of Pediococcus pentosaceus strains of diverse ecological origins and their biotechnological applications.
Project description:BackgroundPediococcus pentosaceus, a promising strain of lactic acid bacteria (LAB), is gradually attracting attention, leading to a rapid increase in experimental research. Due to increased demand for practical applications of microbes, the functional and harmless P. pentosaceus might be a worthwhile LAB strain for both the food industry and biological applications.ResultsAs an additive, P. pentosaceus improves the taste and nutrition of food, as well as the storage of animal products. Moreover, the antimicrobial abilities of Pediococcus strains are being highlighted. Evidence suggests that bacteriocins or bacteriocin-like substances (BLISs) produced by P. pentosaceus play effective antibacterial roles in the microbial ecosystem. In addition, various strains of P. pentosaceus have been highlighted for probiotic use due to their anti-inflammation, anticancer, antioxidant, detoxification, and lipid-lowering abilities.ConclusionsTherefore, it is necessary to continue studying P. pentosaceus for further use. Thorough study of several P. pentosaceus strains should clarify the benefits and drawbacks in the future.
Project description:Pediococcus pentosaceus strain GDIAS 001 was isolated from a tapioca sample in Guangzou, China. The genome of GDIAS 001 was assembled using single-molecule real-time (SMRT) sequencing, and it contains 1 chromosome of 1.83 Mbp and 1,835 protein-coding genes, 71 RNA genes, and 56 tRNA genes.