Project description:Draft genome of Syntrophomonas zehnderi – an obligate syntrophic bacterium degrading long chain fatty acids in co-culture with Methanobacterium formicicum
Project description:Quorum sensing is a term used to describe cell-to-cell communication that allows cell density-dependent gene expression. Many Gram-negative bacteria use acyl-homoserine lactone (acyl-HSL) synthases to generate fatty acyl-HSL quorum sensing signals, which function with signal receptors to control expression of specific genes. The fatty acyl group is derived from fatty acid biosynthesis and provides signal specificity, but the variety of signals is limited. We have discovered that the photosynthetic bacterium Rhodopseudomonas palustris uses an acyl-HSL synthase to produce p-coumaroyl-HSL by using environmental p-coumaric acid rather than fatty acids from cellular pools. The bacterium has a signal receptor with homology to fatty acyl-HSL receptors that responds to p-coumaroyl-HSL to regulate global gene expression. We also found that p-coumaroyl-HSL is made by other bacteria including Bradyrhizobium BTAi1 and Silicibacter pomeroyi DSS-3. This discovery extends the range of possibilities for acyl-HSL quorum sensing and raises fundamental questions about quorum sensing within the context of environmental signaling. Keywords: Comparison of transcriptome profiles Transcriptome profiles between Rhodopseudomonas palustris cells grown in the in the presence or absence of pC-HSL were compared.
Project description:Quorum sensing is a term used to describe cell-to-cell communication that allows cell density-dependent gene expression. Many Gram-negative bacteria use acyl-homoserine lactone (acyl-HSL) synthases to generate fatty acyl-HSL quorum sensing signals, which function with signal receptors to control expression of specific genes. The fatty acyl group is derived from fatty acid biosynthesis and provides signal specificity, but the variety of signals is limited. We have discovered that the photosynthetic bacterium Rhodopseudomonas palustris uses an acyl-HSL synthase to produce p-coumaroyl-HSL by using environmental p-coumaric acid rather than fatty acids from cellular pools. The bacterium has a signal receptor with homology to fatty acyl-HSL receptors that responds to p-coumaroyl-HSL to regulate global gene expression. We also found that p-coumaroyl-HSL is made by other bacteria including Bradyrhizobium BTAi1 and Silicibacter pomeroyi DSS-3. This discovery extends the range of possibilities for acyl-HSL quorum sensing and raises fundamental questions about quorum sensing within the context of environmental signaling. Keywords: Comparison of transcriptome profiles
Project description:The study investigated the physiological response of a butyrate-oxidizing co-culture (comprised of Syntrophomonas wolfei and Methanospirillum hungatei) to the addition of a fermentative microorganism, Trichococcus flocculiformis.
Project description:3-hydroxypropionic acid (3-HP) is a promising platform chemical with various industrial applications. Several metabolic routes to produce 3-HP from organic substrates such as sugars or glycerol have been implemented in yeast, enterobacterial species and other microorganisms. In this work, we investigated 3-HP metabolism of the well-studied ‘Knallgas bacterium’ Cupriavidus necator, a potential C1-chassis for the production of 3-HP and other fatty acid derivatives from CO2 and H2. When testing C. necator for its tolerance towards 3-HP, it was noted that it could utilise the compound as the sole source of carbon and energy.
Project description:To further explore the biotoxicity mechanisms of CeO2 nanoparticles (NPs) and the recovery strategies of the according impaired Nitrosomonas europaea (N. europaea, ATCC 19718) cells, a genome-sequenced model ammonia oxidizing bacterium (AOB) commonly detected in the activated sludge of biological wastewater treatment plants, the whole-genome microarray analysis was applied to retrieve the induced transcriptional responses, after their physiological and metabolic activities were evealed.
Project description:To further explore the biotoxicity mechanisms of zinc oxide nanoparticles (ZnO NPs) and the recovery strategies of the accordingly impaired Nitrosomonas europaea (N. europaea, ATCC 19718) cells, a genome-sequenced model ammonia-oxidizing bacterium (AOB) commonly detected in the activated sludge of biological wastewater treatment plants, whole-genome microarray analysis was applied to retrieve the induced transcriptional responses, after their physiological and metabolic activities were revealed.