Project description:In order to gain insight into gene regulation in the Drosophila gut following oral infection, we performed the genome-wide DNA Polymerase II binding data for Polymerase II in the fly gut.
Project description:We report the transcriptional profiles from individual Drosophila melanogaster (whole bodies or dissected brains) to Entomophthora muscae at 24 time points following fungal exposure. In whole fruit fly bodies, a significant immune response is observed following exposure to the fungus. In brains, few differences are consistently observed between infected and uninfected animals.
Project description:Drosophila melanogaster is a well-studied genetic model organism with several large-scale transcriptome resources. Here we investigate 7,952 proteins during the fly life cycle from embryo to adult and also provide a high-resolution temporal time course proteome of 5,458 proteins during embryogenesis. We use our large scale data set to compare transcript/protein expression, uncovering examples of extreme differences between mRNA and protein abundance. In the embryogenesis proteome, the time delay in protein synthesis after transcript expression was determined. For some proteins, including the transcription factor lola, we monitor isoform specific expression levels during early fly development. Furthermore, we obtained firm evidence of 268 small proteins, which are hard to predict by bioinformatics. We observe peptides originating from non-coding regions of the genome and identified Cyp9f3psi as a protein-coding gene. As a powerful resource to the community, we additionally created an interactive web interface (http://www.butterlab.org) advancing the access to our data.
Project description:Drosophila melanogaster is a well-studied genetic model organism with several large-scale transcriptome resources. Here we investigate 7,952 proteins during the fly life cycle from embryo to adult and also provide a high-resolution temporal time course proteome of 5,458 proteins during embryogenesis. We use our large scale data set to compare transcript/protein expression, uncovering examples of extreme differences between mRNA and protein abundance. In the embryogenesis proteome, the time delay in protein synthesis after transcript expression was determined. For some proteins, including the transcription factor lola, we monitor isoform specific expression levels during early fly development. Furthermore, we obtained firm evidence of 268 small proteins, which are hard to predict by bioinformatics. We observe peptides originating from non-coding regions of the genome and identified Cyp9f3psi as a protein-coding gene. As a powerful resource to the community, we additionally created an interactive web interface (http://www.butterlab.org) advancing the access to our data.
Project description:This is an affymetrix array experiment comparing the transcriptome of the Malpighian tubule (or renal tubule) of 7-day adult Oregon R strain Drosophila melanogaster with matched whole fly samples. There are five tubule samples (each derived from approx 1000 tubules (!)), and 5 matched whole-fly samples. i.e. tubule 2 is dissected from the same vial as WholeFly2. As the tubule is probably the premier tissue for true physiology in Drosophila, the dataset can usefully be interrogated in conjunction with the detailed physiological understanding of the tissue: see http://fly.to/tubules
Project description:Our objective was to identify candidate genes that contribute to the long 31-hour circadian period previously observed in DGRP_892. We performed transcriptional profiling of whole fly heads from two genotypes: DGRP_892, and Canton-S B, a line with a normal 24-hour circadian period. We collected fly heads every two hours over a 24-hour period. We quantified differential expression among genotype, time, and sex.