Project description:Chronic viral infections are difficult to treat and new approaches, particularly those involving enhancing immune responses are needed. Herpes simplex virus (HSV) establishes latency, reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and activated T cells require increased metabolism of glutamine for their proliferation. We found that treatment of HSV-1 latently infected mice and HSV-2 infected guinea pigs with supplemental oral glutamine reduced virus reactivation. Transcriptome analysis of mice treated with glutamine showed that several interferon (IFN)-γ inducible genes were upregulated. Unlike wild-type mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in IFN-γ knock-out mice. Mice treated with glutamine had higher numbers of HSV-specific IFN-γ producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.
Project description:Chronic viral infections are difficult to treat and new approaches, particularly those involving enhancing immune responses are needed. Herpes simplex virus (HSV) establishes latency, reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and activated T cells require increased metabolism of glutamine for their proliferation. We found that treatment of HSV-1 latently infected mice and HSV-2 infected guinea pigs with supplemental oral glutamine reduced virus reactivation. Transcriptome analysis of mice treated with glutamine showed that several interferon (IFN)-γ inducible genes were upregulated. Unlike wild-type mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in IFN-γ knock-out mice. Mice treated with glutamine had higher numbers of HSV-specific IFN-γ producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.
Project description:Chronic viral infections are difficult to treat and new approaches, particularly those involving enhancing immune responses are needed. Herpes simplex virus (HSV) establishes latency, reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and activated T cells require increased metabolism of glutamine for their proliferation. We found that treatment of HSV-1 latently infected mice and HSV-2 infected guinea pigs with supplemental oral glutamine reduced virus reactivation. Transcriptome analysis of mice treated with glutamine showed that several interferon (IFN)-γ inducible genes were upregulated. Unlike wild-type mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in IFN-γ knock-out mice. Mice treated with glutamine had higher numbers of HSV-specific IFN-γ producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.
Project description:The purpose of this study was to determine which genes are differentially regulated virus infection in RAW264.7 cells. Cells were infected with Vesicular Stomatitis Virus (VSV) or herpes simplex virus 1 (HSV-1) for 6h. Then the differentially regulated genes were analyzed, focusing on F-box proteins and E3 ubiquitin ligases. RAW264.7 cells were infected with Vesicular Stomatitis Virus (VSV, MOI=1) or herpes simplex virus 1 (HSV-1, MOI=5) for 6h. Equal amounts of RNA were assayed for gene expression using Affymetrix mouse 430 2.0 arrays.
Project description:The purpose of this study was to determine what are the effects of Src deficiency on innate antiviral response upon virus infection in RAW264.7 cells. Wild type and Src-/- RAW264.7 cells were infected with vesicular stomatitis virus (VSV) or herpes simplex virus 1 (HSV-1) for 6h. Then the differentially regulated genes were analyzed. Wild type and Src-/- RAW264.7 cells were infected with vesicular stomatitis virus (VSV, MOI=1) or herpes simplex virus 1 (HSV-1, MOI=5) for 6h. Equal amounts of RNA were assayed for gene expression using Affymetrix mouse 430 2.0 arrays.
Project description:Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes an asymptomatic latent infection of sensory neurons of dorsal root ganglia (DRG). Chemical and physical stress cause intermittent virus reactivation from latently infected DRG and recurrent virus shedding in the genital mucosal epithelium causing genital herpes in symptomatic patients. While T-cells appear to play a role in controlling virus reactivation from DRG and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T-cells into DRG and the vaginal mucosa (VM) remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes in the recurrent herpes guinea pig model. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-2 RR2 protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 (AAV-8) expressing CXCL9, CXCL10, or CXCL11 chemokines to recruit CD4+ and CD8+ T cells into the infected DRG and VM (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ T cells in reducing virus shedding at the vaginal site of infection and the severity of recurrent genital herpes and propose the novel prime-pull vaccine strategy to protect against recurrent genital herpes.
Project description:We show that Herpes simplex virus 1 (HSV-1) induces the expression of about 1000 antisense transcripts from the human host cell genome.