Project description:The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterise the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviours. An orbitrap MS/MS proteomics technique defined the extracellular proteases secreted by Fusarium graminearum.
Project description:We report the transcriptome profile of different cultivars of Fusarium graminearum-infected wheat grains, aiming to search for some different expression genes and pathways to reveal the difference between wheat cultivars.
Project description:We performed transcriptome analysis using an Agilent custom Fusarium graminearum 8X15k microarray ver1.2 to profile the effects of L-Thr treatment in F. graminearum.
Project description:The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterise the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviours. An orbitrap MS/MS proteomics technique defined the extracellular proteases secreted by Fusarium graminearum. This dataset includes the cellular control sample that was analysed with shotgun mass-spec proteomics followed SearchGUI and Peptide shaker searches.
Project description:In this study, RNA-seq based comparative transcriptome analysis was used to study the response between Fusarium graminearum and Ustilago maydis to different growth conditions. RNA-seq libraries were generated from fungal filaments growing in culture (complete medium) and from infected maize silk. This data set contains the data for the Fusarium graminearum and Ustilago maydis medium growth condition.