Project description:Brugia malayi is a parasitic nematode that causes lymphatic filariasis in humans. A total of 178 novel microRNA were identified from short read transcriptional data, which when combined with known Brugia microRNAs yielded a total of 284 microRNA. Of these, 123 microRNA sequences (43%) are differentially expressed over the mammalian life stages of B. malayi that we examined. Putative targets of these microRNA were identified from inversely expressed target clusters that contain valid seed sequences for the corresponding microRNAs. The largest identified cluster is downregulated in adult females and enriched in zinc finger domains, helicase domains, and DNA binding domains suggesting this microRNA cluster may have regulatory control over a large proportion of adult female specific mRNA genes. MicroRNA-like molecules are identified as produced by the Wolbachia endosymbiont, providing evidence for direct nucleic acid-based interdomain communication between filarial nematodes and their bacterial obligate endosymbiont.
Project description:Emergence of the symbiotic lifestyle fostered the immense diversity of all ecosystems on Earth, but symbiosis plays a particularly remarkable role in marine ecosystems. Photosynthetic dinoflagellate endosymbionts power reef ecosystems by transferring vital nutrients to their coral hosts. The mechanisms driving this symbiosis, specifically those which allow hosts to discriminate between beneficial symbionts and pathogens, are not well understood. Here, we uncover that host immune suppression is key for dinoflagellate endosymbionts to avoid elimination by the host using a comparative, model systems approach. Unexpectedly, we find that the clearance of non-symbiotic microalgae occurs by non-lytic expulsion (vomocytosis) and not intracellular digestion, the canonical mechanism used by professional immune cells to destroy foreign invaders. We provide evidence that suppression of TLR signalling by targeting the conserved MyD88 adapter protein has been co-opted for this endosymbiotic lifestyle, suggesting that this is an evolutionarily ancient mechanism exploited to facilitate symbiotic associations ranging from coral endosymbiosis to the microbiome of vertebrate guts.
Project description:Emergence of the symbiotic lifestyle fostered the immense diversity of all ecosystems on Earth, but symbiosis plays a particularly remarkable role in marine ecosystems. Photosynthetic dinoflagellate endosymbionts power reef ecosystems by transferring vital nutrients to their coral hosts. The mechanisms driving this symbiosis, specifically those which allow hosts to discriminate between beneficial symbionts and pathogens, are not well understood. Here, we uncover that host immune suppression is key for dinoflagellate endosymbionts to avoid elimination by the host using a comparative, model systems approach. Unexpectedly, we find that the clearance of non-symbiotic microalgae occurs by non-lytic expulsion (vomocytosis) and not intracellular digestion, the canonical mechanism used by professional immune cells to destroy foreign invaders. We provide evidence that suppression of TLR signalling by targeting the conserved MyD88 adapter protein has been co-opted for this endosymbiotic lifestyle, suggesting that this is an evolutionarily ancient mechanism exploited to facilitate symbiotic associations ranging from coral endosymbiosis to the microbiome of vertebrate guts.
Project description:Leishmania RNA virus is an endosymbiotic virus of obligate intracellular Leishmania parasites. The presence of Leishmania RNA virus has been associated to metastatic leishmaniasis in hamsters and the failure of the first-line treatment in humans. This experiment aims to find the differences in the microRNA profile of bone-marrow derived macrophages infected with Leishmania RNA virus containing L.guyanensis or virus-free parasites.
Project description:A striking property of the ancient and obligate mutualism between figs and their pollinating wasps is that fig wasps consistently oviposit in the inner flowers of the fig syconium (gall flowers, which develop into galls that house developing larvae), but typically do not use the outer ring of flowers (seed flowers, which develop into seeds). To better understand differences between gall and seed flowers that might influence oviposition choices, and the unknown mechanisms underlying gall formation, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, which posits that only a portion of fig flowers are physiologically capable of responding to gall induction or supporting larval development, we found significant differences in gene expression assigned to defense and metabolism between gall- and seed flowers in receptive syconia. Transcripts assigned to flavonoids and defense were especially prevalent in receptive gall flowers, and carbohydrate metabolism was significantly up-regulated relative to seed flowers. In turn, high expression of the venom gene icarapin during wasp embryogenesis within galled flowers distinguishes it as a candidate gene for gall initiation. In response to galling, the fig significantly up-regulates the expression of chalcone synthase, which previously has been connected to gall formation in other plants. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides evidence for a stability mechanism in the ancient fig-fig wasp association. We examined two different Ficus flower types at two different time points. Each sample contained a pool of hundreds of individual flowers from multiple sycomia.