Project description:We perform a self hybridisation comprative genomic hybridization (CGH) in order to validate the probe tiling design we done on Trichoderma reesei. This hybridization was done using QM6a wild type strain.
Project description:Trichoderma reesei is the main industrial producer of cellulases and hemicellulases used to depolymerize biomass in many biotechnical applications. Many production strains in use have been generated by classical mutagenesis. In this study we characterized genomic alterations in hyperproducing mutants of T. reesei by high-resolution comparative genomic hybridisation tiling array. We carried out aCGH analysis of four hyperproducing strains (QM9123, QM9414, NG14 and RutC-30) using QM6a genome as a reference. ArrayCGH analysis identified dozens of mutations in each strain analyzed.
Project description:We perform a self hybridisation comprative genomic hybridization (CGH) in order to validate the probe tiling design we done on Trichoderma reesei. This hybridization was done using QM6a wild type strain. One biological replicate
Project description:In this study, the recombinant Trichoderma reesei strain HJ48 was employed to investigate the differences between anaerobic and aerobic fermentation of glucose, through genome-wide transcription analysis.Analysis of the genes induced under fermentation condition has revealed novel features in T. reesei. Our results how that many genes related to ribosome were expressed more highly under aerobic condition in HJ48.
Project description:We investigated the function of the G-protein coupled receptor 72004 in Trichoderma reesei and found that it is involved in methionine response and gene expression in light and darkness
Project description:Lactose (1,4-0-M-CM-^_-d-galactopyranosyl-d-glucose), a by-product from cheese manufacture or whey processing industries, is known to induce the formation of plant biomass hydrolyzing enzymes needed for the biorefinery industry in the fungus Trichoderma reesei, but the reason for this induction and the underlying mechanism are not fully understood. Here, we used systems analysis of the Trichoderma reesei transcriptome during utilization of lactose. We found that the respective CAZome encoded glycosyl hydrolases specifically tailored for the attack of monocotyledon xyloglucan. In addition, genes for a high number of putative transporters of the major facilitator superfamily were also induced. Systematic knock out of them identified a gene whose knock-out completely impaired lactose utilization and cellulase induction in Trichoderma reesei. These data shed new light on the mechanism by which Trichoderma reesei metabolizes lactose and illuminate the key role of M-CM-^_-D-galactosides in habitat specificity of this fungus. We used two biological replicas of Trichoderma reesei growing on lactose, glucose and glycerol
Project description:Lactose (1,4-0-ß-d-galactopyranosyl-d-glucose), a by-product from cheese manufacture or whey processing industries, is known to induce the formation of plant biomass hydrolyzing enzymes needed for the biorefinery industry in the fungus Trichoderma reesei, but the reason for this induction and the underlying mechanism are not fully understood. Here, we used systems analysis of the Trichoderma reesei transcriptome during utilization of lactose. We found that the respective CAZome encoded glycosyl hydrolases specifically tailored for the attack of monocotyledon xyloglucan. In addition, genes for a high number of putative transporters of the major facilitator superfamily were also induced. Systematic knock out of them identified a gene whose knock-out completely impaired lactose utilization and cellulase induction in Trichoderma reesei. These data shed new light on the mechanism by which Trichoderma reesei metabolizes lactose and illuminate the key role of ß-D-galactosides in habitat specificity of this fungus.