Project description:Stimulus-specific gene expression programs are enabled by enhancers, on which stimulus-regulated transcription factors (SRTFs) can land in a cell type- and stimulus-dependent manner. In this study, we identified the key features of enhancers that mediate differential responses to Toll-like receptor (TLR)-stimulation. We characterized the TLR3- and TLR9-induced programs and enhancers in CD8+ dendritic cells.The relevance of these features has been confirmed via machine learning application and by mapping SRTF-binding.
Project description:Stimulus-specific gene expression programs are enabled by enhancers, on which stimulus-regulated transcription factors (SRTFs) can land in a cell type- and stimulus-dependent manner. In this study, we identified the key features of enhancers that mediate differential responses to Toll-like receptor (TLR)-stimulation. We characterized the TLR3- and TLR9-induced programs and enhancers in CD8+ dendritic cells.The relevance of these features has been confirmed via machine learning application and by mapping SRTF-binding.
Project description:Stimulus-specific gene expression programs are enabled by enhancers, on which stimulus-regulated transcription factors (SRTFs) can land in a cell type- and stimulus-dependent manner. In this study, we identified the key features of enhancers that mediate differential responses to Toll-like receptor (TLR)-stimulation. We characterized the TLR3- and TLR9-induced programs and enhancers in CD8+ dendritic cells.The relevance of these features has been confirmed via machine learning application and by mapping SRTF-binding.
Project description:This SuperSeries is composed of the following subset Series: GSE32709: DNA methylation regulates lineage-specifying genes in the human vascular system [expression array]. GSE34486: DNA methylation regulates lineage-specifying genes in the human vascular system [methylation array]. Refer to individual Series
Project description:The dosage compensation complex (DCC) of Drosophila identifies its X chromosomal binding sites with exquisite selectivity. The principles that assure this vital targeting are known from the D. melanogaster model: DCC-intrinsic specificity of DNA binding, cooperativity with the CLAMP protein, and non-coding roX2 RNA transcribed from the X chromosome. We found that in D. virilis, a species separated from melanogaster by 40 million years of evolution, all principles are active, but contribute differently to X-specificity. In melanogaster, the DCC subunit MSL2 evolved intrinsic DNA-binding selectivity for rare PionX sites, which mark the X chromosome. In virilis, PionX sites are abundant and not X-enriched. Accordingly, MSL2 lacks specific recognition. Here, roX2 RNA plays a more instructive role, counteracting a non-productive interaction of CLAMP and modulating DCC binding selectivity. Remarkably, roX2 triggers a low-diffusion chromatin binding mode characteristic of DCC. Evidently, X-specific regulation is achieved by divergent evolution of similar components.