Project description:The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate investigation of pathologies including interstitial lung disease, cancer, and SARS-CoV-2-associated COVID-19 pneumonia. We generated long-term feeder-free, chemically-defined culture of distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids exhibited AT1 transdifferentiation potential while basal cell organoids developed lumens lined by differentiated club and ciliated cells. Single cell analysis of basal organoid KRT5+ cells revealed a distinct ITGA6+ITGB4+ mitotic population whose proliferation further segregated to a TNFRSF12Ahi subfraction comprising ~10% of KRT5+ basal cells, residing in clusters within terminal bronchioles and exhibiting enriched clonogenic organoid growth activity. Distal lung organoids were created with apical-out polarity to display ACE2 on the exposed external surface, facilitating SARS-CoV-2 infection of AT2 and basal cultures and identifying club cells as a novel target population. This long-term, feeder-free organoid culture of human distal lung, coupled with single cell analysis, identifies unsuspected basal cell functional heterogeneity and establishes a facile in vitro organoid model for human distal lung infections including COVID-19-associated pneumonia.
Project description:We performed RNA-Seq of SARS-Cov-2 infection in human bronchial epithelium organoids. The organoids were infected with SARS-Cov-2 for 48hours or 72hours respectively, and compared with uninfected mock control.
Project description:We performed RNA-Seq of SARS-Cov-2 infection in human airway epithelium organoids. The organoids were infected with SARS-Cov-2 for 24hours or 48hours respectively, and compared with uninfected mock control.
Project description:Purpose: To identify the diferentially expressed genes in SARS-CoV-2 susceptible and resistant organoids during the ifnection. Method: We selected 3 susceptible (C8, C9, and C10)- and 3 restant (C1, C2, and C7)-organoids lines and infected SARS-CoV-2 at multiplicity of infection (MOI) of 4 for 24 and 72 hrs. The RNAs were collected and then sequenced by CEL-seq2. Sequencing was performed on Illumina NovaSeq 6000. Results: Longitudinal transcriptome analyses identified robust yet late transcriptional changes induced by SARS-CoV-2, the magnitude of which corresponded to the levels of viral infection.
Project description:We performed unbiased transcriptomic profiling on organoids cultures after SARS-CoV-2 infection to gain insights into AT2s response to SARS-CoV-2 infection.
Project description:We investigated the interactions of four distinct betacoronaviruses; HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2 within human bronchial epithelial (HBE) organoids using single-cell RNA sequencing (scRNA-seq) to comprehensively understand betacoronaviruses cellular tropism and the intricate interplay between these cells and the host's immune defense mechanisms.
Project description:COVID-19 typically manifests as a respiratory illness but several clinical reports described gastrointestinal (GI) symptoms. This is particularly true in children, whom GI symptoms are frequent and viral shedding outlasts viral clearance from the respiratory system. These observations raise the question of whether the virus can replicate within the stomach. Here we show the novel derivation of gastric organoids from fetal, pediatric and adult biopsies and prove their value as in vitro models for SARS-CoV-2 infection. To facilitate infection, we induced a reversed polarity in our organoids (RP-GOs). The pediatric RP-GOs are fully susceptible to infection with SARS-CoV-2, while the viral replication is significantly lower in organoids of fetal and adult origin. Transcriptomic analysis shows a moderate innate antiviral response and the lack of differentially expressed genes belonging to the interferon family. Collectively, we show how the virus can efficiently infect gastric epithelium, suggesting that the stomach might have an active role in fecal-oral SARS-CoV-2 transmission.
Project description:COVID-19 associated acute kidney injury (COVID-AKI) is a common complication of SARS-CoV-2 infection in hospitalized patients. It is unclear how susceptible human kidneys are to direct SARS-CoV-2 infection and whether pharmacologic manipulation of the renin-angiotensin II signaling (RAS) pathway modulates this susceptibility. Using induced pluripotent stem cell derived kidney organoids, SARS-CoV-1, SARS-CoV-2 and MERS-CoV tropism, defined by the paired expression of a host receptor (ACE2, NRP1 or DPP4) and protease (TMPRSS2, TMPRSS4, FURIN, CTSB or CTSL), was identified primarily amongst proximal tubule cells. Losartan, an angiotensin II receptor blocker being tested in COVID-19 patients, inhibited angiotensin II mediated internalization of ACE2, upregulated interferon stimulated genes (IFITM1 and BST2) known to restrict viral entry, and attenuated the infection of proximal tubule cells by SARS-CoV-2. Our work highlights the susceptibility of proximal tubule cells to SARS-CoV-2 and reveals a putative protective role for RAS inhibitors during SARS-CoV-2 infection.