Project description:Tryptophan-kynurenine metabolism plays an important role in the pathogenesis of several psychiatric diseases but its physiological function in peripheral tissues remains unclear. Physical exercise training activates a biochemical pathway in skeletal muscle that protects from neuroinflammation and, as a byproduct, leads to kynurenic acid accumulation in the periphery. We therefore investigated the effects of kynurenic acid in murine white adipose tissue. We used microarrays to detail global programme of gene expression underlying Kynurenic acid mediated effects on inguinal primary adipocytes.
Project description:Purpose: The goals of this study are to compare the transcription difference between purified dermal adipocytes and inguinal adipocytes Methods: Transcriptome of purified dermal adipocytes and inguinal adipocytes were generated by deep sequencing, using Illumina Hiseq 2500 v3 sequencing system.
Project description:We derived a model that allows for doxycycline-inducible deletion of Zfp423 in mature adipocytes of adult mice (Adiponectin-rtTA; TRE-CRE; Zfp423 loxP/loxP). In these animals deletion of Zfp423 results in a spontaneous conversion of white adipocytes into beige-like adipocytes at room temperature. The goal of this expression analysis was to 1) determine the gene programs dependent on adipocyte Zfp423 in inguinal WAT, and 2) determine the similarity between the converted beige-like cells to normal beige adipose tissue that accumulates upon cold exppsure.
Project description:Here we have employed chromatin immunoprecipitation combined with deep sequencing to map and compare PPARM-NM-3 binding in in vitro differentiated primary mouse adipocytes isolated from epididymal, inguinal, and brown adipose tissues. While these PPARM-NM-3 binding profiles are overall similar, there are clear depot-selective binding sites. Most PPARM-NM-3 binding sites previously mapped in 3T3-L1 adipocytes can also be detected in primary adipocytes, but there are a large number of PPARM-NM-3 binding sites that are specific to the primary cells, and these tend to be located in closed chromatin regions in 3T3-L1 adipocytes. The depot-selective binding of PPARM-NM-3 is associated with highly depot-specific gene expression. This indicates that PPARM-NM-3 plays a role in the induction of genes characteristic of different adipocyte lineages and that preadipocytes from different depots are differentially preprogrammed to permit PPARM-NM-3 lineage-specific recruitment even when differentiated in vitro. Examination of PPARM-NM-3 binding in in vitro differentiatied adipocytes isolated from three different adipose depots.
Project description:Here we have employed chromatin immunoprecipitation combined with deep sequencing to map and compare PPARγ binding in in vitro differentiated primary mouse adipocytes isolated from epididymal, inguinal, and brown adipose tissues. While these PPARγ binding profiles are overall similar, there are clear depot-selective binding sites. Most PPARγ binding sites previously mapped in 3T3-L1 adipocytes can also be detected in primary adipocytes, but there are a large number of PPARγ binding sites that are specific to the primary cells, and these tend to be located in closed chromatin regions in 3T3-L1 adipocytes. The depot-selective binding of PPARγ is associated with highly depot-specific gene expression. This indicates that PPARγ plays a role in the induction of genes characteristic of different adipocyte lineages and that preadipocytes from different depots are differentially preprogrammed to permit PPARγ lineage-specific recruitment even when differentiated in vitro.
Project description:We analyzed coding and noncoding transcript abundance in primary differentiating brite adipocytes derived from murine inguinal white adipose tissue, 24 hours in response to lncRNA Ctcflos knockdown at day 1 of differentiation
Project description:We analyzed coding and noncoding transcript abundance in primary differentiating brite adipocytes derived from murine inguinal white adipose tissue, 24 hours or 72 hours in response to lncRNA Ctcflos knockdown at day 1 of differentiation
Project description:We applied single-cell ATAC sequencing and lipid profiling to inguinal and epididymal adipose depots from mice that received sham surgery or vertical sleeve gastrectomy (VSG). We observed depot-specific cellular composition and chromatin accessibility patterns that were altered by VSG. Specifically, accessibility at Scd1, a fatty acid desaturase, was substantially reduced after VSG in mature adipocytes of inguinal but not epididymal depots. This was accompanied by reduced accumulation of SCD1-produced unsaturated fatty acids. Given these findings and reports that reductions in Scd1 attenuate obesity and insulin resistance our results suggest VSG exerts its beneficial effects through an inguinal depot-specific reduction of SCD1 activity.
Project description:Using high throughput sequencing we report gene expression changes in mouse inguinal adipocytes from WT and Tet1 adipose-selective KO mice housed room temperature and exposed to 4 degree of cold for 4 hours