Project description:A significant part of the heavier petroleum fraction resulting from offshore oil-spills sinks to the deep-sea. Its fate and biodegradation by microbial communities is unclear. In particular, the physiological and metabolic features of hydrostatic pressure (HP) adapted oil-degraders have been neglected. In this study, hydrocarbon-free sediment from 1km below surface water (bsl) was incubated at 0.1, 10 and 20MPa (equivalent to surface waters, 1 and 2km bsl) using triacontane (C30) as sole carbon source for a 3-month enrichment period. HP strongly impacted biodegration, as it selected for microbial communities with small cells, high O2 respiration and nutrients requirements, but low biomass and C30-degradation yields. The alkane-degrading metaproteome linked to β-oxidation was detected but its expression was reduced under HP contrary to several housekeeping genes. This was reflected in the enriched communities, as atmospheric pressure was dominated by hydrocarbonoclastic bacteria while non-specialized or previously unrecognized oil-degrading genera were enriched under HP.