Project description:To investigate CD163-related signals and cytokine production, mRNA expression of resident peritoneal marophages derived from wild type mice and CD163-deficient mice was analyzed.
Project description:Comparative genomic analysis of basal and LPS-induced expression patterns of bone marrow derived macrophages and bone marrow resident macrophages demonstrates completely divergent transcriptome profile and indicates/confirms the existance of two distinct monocyte/macrophage populations in murine bone marrow. Most resident tissue macrophages descent from embryonic precursors of the yolk sac but inflammatory and bone marrow (BM) macrophages are considered to develop from hematopoietic stem cells (HSCs) in the BM. We now identified a novel subpopulation of resident CD163+ macrophages in the BM which were phenotypically and functionally distinct from classical BM-derived macrophages. Bioinformatics analysis of transcriptoms indicated a unique immune-modulatory phenotype of CD163+ macrophages. Cell fate studies in Csf1rMer-iCre-Mer;RosaLSL-GFP mice demonstrated that resident CD163+ macrophages of the BM do not develop from HSCs but descent from embryonic progenitors in the yolk sac strictly dependent on transcription factor IRF8. In contrast to other yolk sac derived tissue macrophages CD163+ cells seem to play a relevant role in infections and sterile inflammation. IRF8-/- mice lacking this population are highly sensible to S. aureus infections. Thus, CD163 defines a macrophage population resident in the bone marrow but originating from yolk sac progenitors which exhibits immune-modulatory properties under different inflammatory conditions. We used quantitative RNA-seq to perform whole transcriptome analysis and compare the transcriptomes of resident CD163+ BM macrophages and classical CD163- BMDM in steady state and after LPS stimulation.
Project description:Tissue resident macrophages are notoriously heterogeneous, exhibiting discrete phenotypes as a consequence of tissue- and micro-anatomical niche-specific functions, but the molecular basis for this is not understood. We resolved a restricted transcriptional profile for the self-renewing population of peritoneal resident macrophages, which is expressed during homeostasis and inflammation and distinct from other MM-CM-^X. Prominent within this profile was the expression of Gata6. This study represents a characterisation of the role of Gata6 in peritoneal resident macrophage phenotype. We used microarrays to determine the patterns of gene expression in peritoneal resident MM-CM-^X in the absence of GATA-6 against wild type. Conditional 'floxed' Gata6 deficient sex-matched mice between 7 weeks old were compared against wild type
Project description:microRNA transcriptome data from wild type and Gata6-deficient tissue resident peritoneal macrophages. Tissue resident macrophages are notoriously heterogeneous, exhibiting discrete phenotypes as a consequence of tissue- and micro-anatomical niche-specific functions, but the molecular basis for this is not understood. Gata6 itself has been shown to be a target of multiple miR. However, microRNA transcriptome and its dependence on tissue-specific macrophage programming, such as effected by GATA6, has not been explored. We used microRNA sequencing to determine the patterns of microRNA expression in peritoneal resident macrophages at homeostasis in the absence of GATA-6 against wild type.
Project description:Skin resident macrophages were isolated by FACS sorting at different ages post natally and RNA was extracted mouse skin resident macrophages
Project description:Genes expression in Ly6C+/F4/80+ inflammatory macrophages, CX3CR1+/F4/80+ tissue resident macrophages and Ly6G+/F4/80- neutrophils which were isolated from day 3 wounds in C57/B6 mice aged 8 weeks by cell sorting Ly6C+ macrophages expressed higher (over 5 folds) levels of 241 genes compared to CX3CR1+ macrophages, and 3382 genes compared to neutrophils
Project description:Human and mouse monocytes can be divided into 2 different sub-populations, using CD14-CD16 and Ly6C-CX3CR1 respectively. We investigated the pig monocytes sub-populations and found that all porcine monocyte express CD16 and CD172M-NM-1 but can be divided into 2 subpopulation using CD14 and the scavenger receptor CD163. The CD14hi-CD163low population resemble to the inflammatory monocytes whereas the CD14low-CD163hi display more a resident monocyte type. Pig monocyte can be differentiated into macrophages when cultured with rhCSF-1 and show an increase in size, granularity and autofluorescence, and express the common macrophage markers CD14, CD16 and CD172M-NM-1. Gene expression in these 2 sub-populations was profiled using the newly-developed and annotated pig whole genome snowball microarray, showing a distinct pattern between inflammatory and resident monocytes but this difference would be more a maturation process instead of two separate subsets. Furthermore, the expression of certain genes such as CD36, CLEC4E or TREM-1 proved to share the same pattern as human monocytes, quite different from mouse monocytes. These results emphasize the potential role of the pigs as a model for human inflammatory disease and will improved our knowledge on the mononuclear phagocyte system development. Porcine PBMCs were isolated from the blood of three seperate pigs, FACS sorted on expression of CD14 and CD163 and RNA isolated from each sample, a total of 6 microarrays were hybridised
Project description:To better determine functional heterogenity of small intestinal macrophages, 6 subsets of were sorted for RNA sequencing based on expression of CD4, Tim4, and CD163
Project description:Tissue resident macrophages are notoriously heterogeneous, exhibiting discrete phenotypes as a consequence of tissue- and micro-anatomical niche-specific functions, but the molecular basis for this is not understood. We resolved a restricted transcriptional profile for the self-renewing population of peritoneal resident macrophages, which is expressed during homeostasis and inflammation and distinct from other MØ. Prominent within this profile was the expression of Gata6. This study represents a characterisation of the role of Gata6 in peritoneal resident macrophage phenotype. We used microarrays to determine the patterns of gene expression in peritoneal resident MØ in the absence of GATA-6 against wild type.