Project description:This project contributes to the proteomic comparison of different bacteria. A whole proteome catalogue was obtained for Blastococcus saxobsidens DD2 grown in standard conditions.
Project description:Brucellosis, caused by Brucella spp, is an important zoonotic disease leading to enormous economic losses in livestock and posing great threat to public health worldwide. The live attenuated Brucella suis (B. suis) strain S2 is a safe and effective vaccine, and it is most widely used in animals in China. However, S2 vaccination in animals may raise debates and concerns in terms of safety to primates, particularly human. In this study, using cynomolgus monkey as an animal model, we evaluated the safety of the S2 vaccine strain on primate, in addition, we performed transcriptome analysis to determine gene expression profiling on cynomolgus monkeys immunized with the S2 vaccine. Our results suggested that the S2 vaccine was safe to cynomolgus monkeys. Transcriptome analysis identified 663 differentially expressed genes (DEGs), of which 348 were significantly up-regulated and 315 were remarkably down-regulated. Gene Ontology (GO) classification and KEGG pathway analysis indicated that these DEGs were involved in various biological processes, including chemokine signaling pathway, actin cytoskeleton regulation, defense response, immune system processing, and type I interferon signaling pathway. The molecular functions of the DEGs mainly comprised of 2'-5'-oligoadenylate synthetase activity, double-stranded RNA binding and actin binding. Moreover, the cellular components of these DEGs included integrin complex, myosin II complex and blood microparticle. Our findings alleviate the concerns in safety of the S2 vaccine on primates and provide genetic basis of mammalian host response and gene regulation after vaccination with the S2 vaccine.
Project description:Gene expression profile in laser-dissected islets of Langerhans in the inducible RIP-LCMV-GP mouse model for type 1 diabetes (T1D) RIP-LCMV-GP mice express the glycoprotein (GP) of the lymphocytic choriomeningitis virus (LCMV) in the beta-cells (rat insulin promotor, RIP); T1D develops 10-14 after LCMV-infection