ABSTRACT: Gene expression profile in laser-dissected islets of Langerhans in the inducible RIP-LCMV-GP mouse model for type 1 diabetes (T1D) RIP-LCMV-GP mice express the glycoprotein (GP) of the lymphocytic choriomeningitis virus (LCMV) in the beta-cells (rat insulin promotor, RIP); T1D develops 10-14 after LCMV-infection
Project description:Investigation of the change of the Trail-dependent NK cell transcriptome during short-term (24h) infection with lymphocytic choriomeningitis virus (LCMV). RNA sequencing-based transcriptomics analysis was performed in spleen-isolated (NK1.1+CD3-) NK cells from 3 naïve Trail+/+ mice, 3 naive Trail-/- mice, 4 LCMV-infected Trail+/+ mice, and 4 LCMV-infected Trail-/- mice.
Project description:The envelope glycoprotein GP of the ebolaviruses is essential for host cell attachment and entry. It is also the primary target of the protective and neutralizing antibody response in both natural infection and vaccination. GP is heavily glycosylated with up to 17 predicted N-linked sites, numerous O-linked glycans in its disordered mucin-like domain (MLD), and three predicted C-linked mannosylation sites. Glycosylation of GP is important for host cell attachment to cell-surface lectins, as well as GP stability and fusion activity. Moreover, it has been shown to shield GP from neutralizing activity of serum antibodies. Here, we use mass spectrometry-based glycoproteomics to profile the site-specific glycosylation patterns of ebolavirus GP, including N-, O-, and C-linked glycans.
Project description:CD4 T cells promote innate and adaptive immune responses, but how vaccine-elicited CD4 T cells contribute to immune protection remains unclear. Here we evaluated whether induction of virus-specific CD4 T cells by vaccination would protect mice against infection with chronic lymphocytic choriomeningitis virus (LCMV). Immunization with vaccines that selectively induced CD4 T cell responses resulted in catastrophic inflammation and mortality following challenge with a persistent form of LCMV. Immunopathology required antigen-specific CD4 T cells and was associated with a cytokine storm, generalized inflammation, and multi-organ system failure. Virus-specific CD8 T cells or antibodies abrogated the pathology. These data demonstrate that vaccine-elicited CD4 T cells in the absence of effective antiviral immune responses can trigger lethal immunopathology. Splenic GP66-specific CD4 T cells from mice immunized with either a LMwt vaccine (sham) or LMgp61 vaccine (CD4 vaccine) were purified by FACS on day 8 post-infection with LCMV clone 13
Project description:Myeloid-derived suppressor cells (MDSC) are major negative regulators of immune responses in cancer and chronic infections. It remains unclear if regulation of MDSC activity at different conditions is controlled by similar mechanisms. In order to compare MDSC in mice with cancer and lymphocytic choriomeningitis virus (LCMV) infection, we would like to perform gene profiling and comparison of M-MDSCs in tumor bearing and LCMV infected mice using total RNAseq:
Project description:Pulmonary hypertension (PH) patients typically present with a diminished platelet count, but the role of platelets in the development and progression of PH remains unclear.Transcriptomic analysis revealed that platelets from PH patients exhibited an upregulation of genes associated with cellular adhesion, platelet activation, and adhesion. Notably, the hub genes, glycoprotein IIb/IIIa (GP IIb/IIIa), were implicated in mediating platelet-endothelium adhesion through their interaction with intercellular adhesion molecule-1 (ICAM-1) on pulmonary artery endothelial cells, triggering platelet activation and the subsequent release of platelet-derived growth factor BB (PDGF-BB).
Project description:Following infection with LCMV, CD4+ SMARTA TCR transgenic cells (specific for the gp61-80 epitope of the LCMV glycoprotein) rapidly expand, become effector cells, and go on to form a long-lived memory population. Following infection with a recombinant Listeria monocytogenes expressing the LCMV epitope gp61-80, SMARTA cells also expand but display defective effector differentiation and fail to form memory. In an attempt to understand the signals required for CD4 T cell memory differentiation, we compared gene expression by SMARTA cells at the peak of the primary response following either Lm-gp61 or LCMV infection. Keywords: response to LCMV or Lm-gp61 infection
Project description:Following infection with LCMV, CD4+ SMARTA TCR transgenic cells (specific for the gp61-80 epitope of the LCMV glycoprotein) rapidly expand, become effector cells, and go on to form a long-lived memory population. Following infection with a recombinant Listeria monocytogenes expressing the LCMV epitope gp61-80, SMARTA cells also expand but display defective effector differentiation and fail to form memory. In an attempt to understand the signals required for CD4 T cell memory differentiation, we compared gene expression by SMARTA cells at the peak of the primary response following either Lm-gp61 or LCMV infection. Experiment Overall Design: SMARTA cells were purified at day 7 post-infection with either LCMV or Lm-gp61. SMARTA cells were sorted on the basis of Thy1.1 expression using a FACSAria. Cells were sorted through the machine twice to enhance purity. Two biological replicates of each group are provided. Each replicate represents the results of SMARTA pooled from three animals.
Project description:Understanding the response of memory CD8 T cells to persistent antigen re-stimulation and the role of CD4 T cell help is critical to the design of successful vaccines for chronic diseases. However, studies comparing the protective abilities and qualities of memory and naïve cells have been mostly performed in acute infections, and little is known about their roles during chronic infections. Herein, we show that memory cells dominate over naïve cells and are protective when present in large enough numbers to quickly reduce infection. In contrast, when infection is not rapidly reduced, memory cells are quickly lost, unlike naïve cells. This loss of memory cells is due to (i) an early block in cell proliferation, (ii) selective regulation by the inhibitory receptor 2B4, and (iii) increased reliance on CD4 T cell help. These findings have important implications towards the design of T cell vaccines against chronic infections and tumors. 16 samples are analyzed: 3 replicates of secondary effector CD8 P14 T cells at day 8 post-acute lymphocytic choriomeningitis virus (LCMV) infection; 4 replicates of secondary effector CD8 P14 T cells at day 8 post-chronic LCMV infection; 4 replicates of primary effector CD8 P14 T cells at day 8 post-acute LCMV infection; and 5 replicates of primary effector CD8 P14 T cells at day 8 post-chronic LCMV infection.
Project description:To study the effect of IL-33 sensing on CD8 T cell differentiation during acute infection with lymphocytic choriomeningitis virus (LCMV), activated CD44+ CTLs were flowcytometrically sorted from infected C57BL/6 wildtype and Il1rl1 gene-targeted mice (Il1rl1-ExAB-/-) and subjected to combined single-cell gene expression and single cell TCR-Seq analysis.