Project description:Previous work has suggested that the imprinted gene Phlda2 regulates the signalling function of the placenta by modulating the size of the endocrine compartment. This study investigated the affect that Phlda2 mutant placenta has upon the brains of the wildtype dams carrying different placenta and consequently offspring. Affymetrix Mouse Microarray analysis of maternal hippocampus and hypothalamus was used to demonstrate gene expression changes in the maternal brains of wildtype dams carrying mutant placenta at E16.5.
Project description:Maternal imprinting at the Xist gene is essential to achieve paternal allele-specific imprinted X chromosome inactivation (XCI) in female mammals. However, the mechanism underlying the Xist imprinting is unclear. Here we show that the Xist gene is coated with H3K27me3 in mouse oocytes, which persists through preimplantation development. Ectopic removal of H3K27me3 induces maternal Xist expression and maternal XCI, indicating that maternal H3K27me3 is the imprinting mark of Xist.
Project description:In mammals, mothers are the primary caregiver, programmed, in part, by hormones produced during pregnancy. High-quality maternal care is essential for the survival and lifelong health of offspring. We previously showed that the paternally silenced imprinted gene pleckstrin homology-like domain family A member 2 (Phlda2) functions to negatively regulate a single lineage in the mouse placenta called the spongiotrophoblast, a major source of hormones in pregnancy. Consequently, the offspring's Phlda2 gene dosage may influence the quality of care provided by the mother. Here, we show that wild-type (WT) female mice exposed to offspring with three different doses of the maternally expressed Phlda2 gene-two active alleles, one active allele (the extant state), and loss of function-show changes in the maternal hypothalamus and hippocampus during pregnancy, regions important for maternal-care behaviour. After birth, WT dams exposed in utero to offspring with the highest Phlda2 dose exhibit decreased nursing and grooming of pups and increased focus on nest building. Conversely, 'paternalised' dams, exposed to the lowest Phlda2 dose, showed increased nurturing of their pups, increased self-directed behaviour, and a decreased focus on nest building, behaviour that was robustly maintained in the absence of genetically modified pups. This work raises the intriguing possibility that imprinting of Phlda2 contributed to increased maternal care during the evolution of mammals.
Project description:Imprinting at the Dlk1-Dio3 cluster is controlled by the IG-DMR, an imprinting control region differentially methylated between maternal and paternal chromosomes. The maternal IG-DMR is essential for imprinting control, functioning as a cis enhancer element. Meanwhile, DNA methylation at the paternal IG-DMR is thought to prevent enhancer activity. To explore whether suppression of enhancer activity at the methylated IG-DMR requires the transcriptional repressor TRIM28, we analyzed Trim28chatwo embryos and performed epistatic experiments with IG-DMR deletion mutants. We found that while TRIM28 regulates the enhancer properties of the paternal IG-DMR, it also controls imprinting through other mechanisms. Additionally, we found that the paternal IG-DMR, previously deemed dispensable for imprinting, is required in certain tissues, demonstrating that imprinting is regulated in a tissue-specific manner. Using ChRO-seq to analyze nascent transcription, we show that different tissues have a distinctive regulatory landscape at the Dlk1-Dio3 cluster, providing insight into potential mechanisms of tissue-specific imprinting control. ChRO-seq identified 30 novel transcribed regulatory elements, including a candidate regulatory region that depends on the paternal IG-DMR. Together, our findings challenge the model that Dlk1-Dio3 imprinting is regulated through a single mechanism and demonstrate that different tissues use distinct strategies for imprinting control.
Project description:The reprogramming of parental methylomes is essential for embryonic development. In mammals, paternal 5-methylcytosines (5mCs) have been proposed to be actively converted to oxidized bases. These paternal oxidized bases and maternal 5mCs are believed to be passively diluted by cell divisions. By generating single-base resolution, allele-specific DNA methylomes from mouse gametes, early embryos, and primordial germ cell (PGC), as well as single-base-resolution maps of oxidized cytosine bases for early embryos, we report the existence of 5hmC and 5fC in both maternal and paternal genomes and find that 5mC or its oxidized derivatives, at the majority of demethylated CpGs, are converted to unmodified cytosines independent of passive dilution from gametes to four-cell embryos. Therefore, we conclude that paternal methylome and at least a significant proportion of maternal methylome go through active demethylation during embryonic development. Additionally, all the known imprinting control regions (ICRs) were classified into germ-line or somatic ICRs.
Project description:Gene expression profiling was performed on CNS tissue from neonatal mice carrying the T9H translocation and maternal or paternal duplication of proximal Chromosomes 7 and 15. Our analysis revealed the presence of two novel paternally expressed intergenic transcripts at the PWS/AS locus. The transcripts were termed Pec2 and Pec3 for paternally expressed in the CNS.Our analysis also revealed imprinting of Magel2, Mkrn3, Ndn,Ube3a and Usp29, as well as Pec2 and Pec3 in embryonic brain, 15.5 dpc, and provided a survery of biallelically expressed genes on proximal Chromosomes 7 and 15 in embryonic and neonatal CNS. This SuperSeries is composed of the following subset Series:; GSE12227: Neonatal and embyronic CNS of mice with maternal or paternal duplication of proximal chromosomes 7 and 15 (430A); GSE12230: Neonatal and embyronic CNS of mice with maternal or paternal duplication of proximal chromosomes 7 and 15 (430B) Experiment Overall Design: Refer to individual Series
Project description:DNA demethylation of paternal genome in zygotes takes place in various mammals including mice and human. Recent studies have revealed that this is achieved through Tet3-mediated iterative oxidation of 5-methylcytosine (5mC) coupled with replication-dependent dilution. Tet3-mediated paternal DNA demethylation is believed to be required for mouse development given that Tet3 heterozygous embryos, derived by fertilizing Tet3 knockout (KO) oocytes with wild-type (WT) sperms, exhibit 5mC oxidation defects and embryonic sublethality, Here we demonstrate that the sublethality phenotype of the maternal KO mice is caused by haploinsufficiency of Tet3, but not by defective paternal 5mC oxidation. We found that Tet3 heterozygous mice derived from crosses of heterozygous father or mother with WT mice also exhibit sublethality phenotype similarly to Tet3 maternal KO mice. Importantly, embryos reconstituted with WT paternal nuclei that bypassed 5mC oxidation develop to term and grow to adulthood normally. Genome-scale DNA methylation analysis of the maternal KO zygotes and blastocysts demonstrated that hypermethylation caused by the depletion of maternal Tet3 is largely diminished by the blastocyst stage. Our study thus not only demonstrates that Tet3-mediated paternal 5mC oxidation is dispensable for mouse development but also suggests the existence of a compensation mechanism in preimplantation embryos that can compensate for the defective 5mC oxidation in zygotes. This data set includes RRBS data of wild-type and maternal Tet3 KO zygotes and blastocysts (C57BL/6J x CAST/EiJ)
Project description:Motherhood is characterized by dramatic changes in brain and behavior, but less is known about fatherhood. Here we report that male sticklebacks – a small fish in which fathers provide care – experience dramatic changes in neurogenomic state as they become fathers. Some genes are unique to different stages of paternal care, some genes are shared across stages, and some genes are added to the previously acquired neurogenomic state. Comparative genomic analysis suggests that some of these neurogenomic dynamics resemble changes associated with pregnancy and reproduction in mammalian mothers. Moreover, gene regulatory analysis identified transcription factors that are regulated in opposite directions in response to a territorial challenge versus during paternal care. Altogether these results show that some of the molecular mechanisms of parental care might be deeply conserved and might not be sex-specific, and suggest that tradeoffs between opposing social behaviors are managed at the gene regulatory level.
Project description:Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by maternal mutation and paternal imprinting of the gene encoding UBE3A, an E3 ubiquitin ligase. Although several potential target proteins of UBE3A have been reported, how these proteins regulate neuronal development remains unclear. We performed a large-scale quantitative proteomic analysis using stable-isotope labeling of amino acids in mammals (SILAM) on mice with maternal Ube3a mutation.
Project description:The reprogramming of parental methylomes is essential for embryonic development. In mammals, paternal 5-methylcytosines (5mCs) have been proposed to be actively converted to oxidized bases. These paternal oxidized bases and maternal 5mCs are believed to be passively diluted by cell divisions. By generating single-base resolution, allele-specific DNA methylomes from mouse gametes, early embryos, and primordial germ cell (PGC), as well as single-base-resolution maps of oxidized cytosine bases for early embryos, we report the existence of 5hmC and 5fC in both maternal and paternal genomes and find that 5mC or its oxidized derivatives, at the majority of demethylated CpGs, are converted to unmodified cytosines independent of passive dilution from gametes to four-cell embryos. Therefore, we conclude that paternal methylome and at least a significant proportion of maternal methylome go through active demethylation during embryonic development. Additionally, all the known imprinting control regions (ICRs) were classified into germ-line or somatic ICRs. The cross of two mouse strains was performed using DBA/2J as the paternal strain and C57BL/6J as the maternal strain. The hybrid embryos were collected at 2-cell, 4-cell, ICM, E6.5, E7.5 stages. Female and male E13.5 PGC samples (B6; 129S4-Pou5f1tm2Jae/J) were collected from timed mating of C57BL/6J female mice. MethylC-Seq: oocytes (C57BL/6J), sperm (DBA/2J), 2-cell embryos, 4-cell embryos, ICM, E6.5 embryos, E7.5 embryos, E13.5 female PGCs and E13.5 male PGCs. TAB-Seq: 2-cell embryos. fCAB-Seq: 2-cell embryos. RNA-Seq: oocytes (C57BL/6J).