Project description:To further figure out the molecular mechanisms of IL-17A-mediated DLBCL cells growth, we used the Whole Human Genome Oligo Microarray (4×44K, Agilent Technologies) to identify genes expression. Six samples of SU-DHL-2 cells (2×10^6 cells/ml) co-cultured with or without IL-17A (200pg/ml) for 72hr in vivo. Three samples of SU-DHL-2 cells were all co-cultured with IL-17A , other three samples of SU-DHL-2 cells without IL-17A treatment were used as controls. Then, all these six samples of SU-DHL-2 cells were measured by microarray.
Project description:SU-DHL-5 cells display limited expression of the SUMO isopeptidase SENP6. In this experiment, the chromatin associated fraction of SU-DHL-5 cells was analysed by mass spectrometry. SU-DHL-5 cells were either stably transfected with an empty vector or with a SENP6 expression construct. Changes in protein levels were compared between these two cell lines in triplicate experiments.
Project description:RAD21 ChIA-PET in human SU-DHL-2 cells For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf
Project description:RAD21 ChIA-PET in human SU-DHL-4 cells For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODE_Data_Use_Policy_for_External_Users_03-07-14.pdf
Project description:IL-17A is a pro-inflammatory cytokine that promotes host defense against infections and contributes to the pathogenesis of chronic inflammatory diseases. Dendritic cells (DC) are antigen-presenting cells responsible for adaptive immune responses. Here, we report that IL-17A induces intense remodeling of lipid metabolism in human monocyte-derived DC, as revealed by microarrays analysis. In particular NR1H3/LXR-a and its target genes were significantly upregulated in response to IL-17A. IL-17A induced accumulation of Oil Red O-positive lipid droplets in DC leading to the generation of lipid-laden DC. A lipidomic study established that all the analyzed lipid species, i.e phospholipids, cholesterol, triglycerides, cholesteryl esters were elevated in IL-17A-treated DC. The increased expression of membrane lipid transporters in IL-17A-treated DC as well as their enhanced ability to uptake the fatty acid Bodipy-FL-C16 suggested that lipid uptake was the main mechanism responsible for lipid accumulation in response to IL-17A. IL-17A-induced lipid laden DC were able to stimulate allogeneic T cell proliferation in vitro as efficiently as untreated DC, indicating that IL-17A-treated DC are potently immunogenic. This study, encompassed in the field of immunometabolism, points out for the first time IL-17A as a modulator of lipid metabolism in DC and provides a rationale to delineate the importance of lipid-laden DC in IL-17A-related inflammatory diseases. We used microarrays analysis to understand the impact of IL-17A on human monocyte-derived human dendritic cells. We found overexpression of many genes involved in lipid metabolism in IL-17A-treated dendritic cells compared to untreated dendritic cells. In particular NR1H3/LXR-a and its target genes were significantly upregulated in response to IL-17A. IL-17A induced accumulation of Oil Red O-positive lipid droplets in DC leading to the generation of lipid-laden DC. A lipidomic study established that all the analyzed lipid species, i.e phospholipids, cholesterol, triglycerides, cholesteryl esters were elevated in IL-17A-treated DC. The increased expression of membrane lipid transporters in IL-17A-treated DC as well as their enhanced ability to uptake the fatty acid Bodipy-FL-C16 suggested that lipid uptake was the main mechanism responsible for lipid accumulation in response to IL-17A. IL-17A-induced lipid laden DC were able to stimulate allogeneic T cell proliferation in vitro as efficiently as untreated DC, indicating that IL-17A-treated DC are potently immunogenic. This study, encompassed in the field of immunometabolism, points out for the first time IL-17A as a modulator of lipid metabolism in DC and provides a rationale to delineate the importance of lipid-laden DC in IL-17A-related inflammatory diseases. RNA was extracted from untreated in vitro-generated DC at day 0 (DC, 4 biological replicates ) or DC cultured for 12 days with IL-17A, in the absence or presence of IFN-g (DC-17 and DC-G17, 5 biological replicates)
Project description:IL-17A is a pro-inflammatory cytokine that promotes host defense against infections and contributes to the pathogenesis of chronic inflammatory diseases. Dendritic cells (DC) are antigen-presenting cells responsible for adaptive immune responses. Here, we report that IL-17A induces intense remodeling of lipid metabolism in human monocyte-derived DC, as revealed by microarrays analysis. In particular NR1H3/LXR-a and its target genes were significantly upregulated in response to IL-17A. IL-17A induced accumulation of Oil Red O-positive lipid droplets in DC leading to the generation of lipid-laden DC. A lipidomic study established that all the analyzed lipid species, i.e phospholipids, cholesterol, triglycerides, cholesteryl esters were elevated in IL-17A-treated DC. The increased expression of membrane lipid transporters in IL-17A-treated DC as well as their enhanced ability to uptake the fatty acid Bodipy-FL-C16 suggested that lipid uptake was the main mechanism responsible for lipid accumulation in response to IL-17A. IL-17A-induced lipid laden DC were able to stimulate allogeneic T cell proliferation in vitro as efficiently as untreated DC, indicating that IL-17A-treated DC are potently immunogenic. This study, encompassed in the field of immunometabolism, points out for the first time IL-17A as a modulator of lipid metabolism in DC and provides a rationale to delineate the importance of lipid-laden DC in IL-17A-related inflammatory diseases. We used microarrays analysis to understand the impact of IL-17A on human monocyte-derived human dendritic cells. We found overexpression of many genes involved in lipid metabolism in IL-17A-treated dendritic cells compared to untreated dendritic cells. In particular NR1H3/LXR-a and its target genes were significantly upregulated in response to IL-17A. IL-17A induced accumulation of Oil Red O-positive lipid droplets in DC leading to the generation of lipid-laden DC. A lipidomic study established that all the analyzed lipid species, i.e phospholipids, cholesterol, triglycerides, cholesteryl esters were elevated in IL-17A-treated DC. The increased expression of membrane lipid transporters in IL-17A-treated DC as well as their enhanced ability to uptake the fatty acid Bodipy-FL-C16 suggested that lipid uptake was the main mechanism responsible for lipid accumulation in response to IL-17A. IL-17A-induced lipid laden DC were able to stimulate allogeneic T cell proliferation in vitro as efficiently as untreated DC, indicating that IL-17A-treated DC are potently immunogenic. This study, encompassed in the field of immunometabolism, points out for the first time IL-17A as a modulator of lipid metabolism in DC and provides a rationale to delineate the importance of lipid-laden DC in IL-17A-related inflammatory diseases.
Project description:To understand the mechanisms of CBL0137 in B-NHL therapy, gene expression changes of SU-DHL-4, Raji and Jeko cell lines after CBL0137 treatment were analyzed by RNA-seq
Project description:Psoriatic arthritis is a seronegative polyarticular form of inflammatory arthritis . Genetic analysis implicates a role for both IL-17/23 axis and CD8+ T cells in disease susceptibility. Using RNA-seq we identified differential gene expression between synovial IL-17A+(IFNy+/-) CD8+ T cells compared to IL-17A-IFNy+ CD8+ T cells and IL-17A+CD4+ T cells from the synovial fluid of psoriatic arthritis patients. We find that IL-17A+CD8+ T cells have a transcriptional overlap with IL-17A+CD4+ T cells. Overall we show these IL-17A+ CD8+ T cells have a polyfunctional, pro-inflammatory capacity and are potentially derived from common precursors, shared with IL-17A-CD8+ T cells.
Project description:The goal of this study was to elucidate the effects of inflammation on bone metabolism. As we found IL-17A is induced immediately after bone injury and Il17aâ/â mice showed delayed healing, we analyzed the effects of IL-17A on mesenchymal cells in the repair tissue. Most of the IL-17RA+ cells were PαS cells. We collected these cells and analyzed their response to IL-17A by RNA sequencing. This analysis will provide a mechanistic insight into the mechanism of how IL-17A promote bone formation in the context of bone fracture healing. PαS cells were harvested from the injury tissue of wild-type mice and cultured with or without IL-17A or BMP-2. RNAs were harvested at day 7.
Project description:In psoriasis lesions, a diverse mixture of cytokines is upregulated which influence each other generating a complex inflammatory situation. Although this is the case, the inhibition of Interleukin-17A (IL-17A) alone showed unprecedented clinical results in patients, indicating that IL-17A is a critical inducer of psoriasis pathogenesis. To elucidate IL-17A-driven keratinocyte-intrinsic signaling pathways, we treated monolayers of normal human epidermal keratinocytes in vitro with a mixture of 6 cytokines (IL-17A, TNF-a, IL-17C, IL-22, IL-36g and IFN-g) involved in psoriasis, to mimic the inflammatory milieu in psoriasis lesions. Microarray and gene set enrichment analysis revealed that this cytokine mixture induced similar gene expression changes with the previous transcriptome studies using psoriasis lesions. Importantly, we identified a set of IL-17A-regulated genes in keratinocytes, which recapitulate typical psoriasis genes exemplified by DEFB4A, S100A7, IL19 and CSF3, based on differences in the expression profiles of cells stimulated with 6 cytokines versus cells stimulated with only 5 cytokines lacking IL-17A. Furthermore a specific IL-17A-induced gene, NFKBIZ, which encodes IkappaB-zeta, a transcriptional regulator for NF-kappaB, was demonstrated to have a significant role for IL-17A-induced gene expression. Thus, we present novel in vitro data from normal human keratinocytes that would help elucidating the IL-17A-driven keratinocyte activation in psoriasis. Cytokine mixture-induced gene expression in primary normal human epidermal keratinocytes (NHEKs) was measured at 24 hours after exposure. NHEKs were exposed to the combination of selected six cytokines (IL-17A: 100 ng/ml, TNF-a: 10 ng/ml, IFN-g: 10 ng/ml, IL-17C: 100 ng/ml, IL-22: 100 ng/ml, IL-36g: 500 ng/ml) , or to the different combinations of five of the six cytokines (in total, 7 different treatments and one untreated control). No replicate experiments were conducted.