Project description:We report the application of miRNA next generation sequencing (NGS) for the analysis of impact of processing on miRNA in human breast milk, donated by 3 volunteers. MiRNA content of total and exosomal fraction was compared between unprocessed milk and sample subjected to either Holder (thermal) pasteurization (HoP) or elevated pressure processing (HPP). NGS reads were mapped to miRBase in order to obtain miRNA counts. Then, we analyzed differences in the miRNA abundance and function between raw and processed material. It was observed that both processing methods reduce number of miRNA reads and HoP is significantly more detrimental to miRNA than HPP.
Project description:The concept of milk as a healthy food has opened the way for studies on milk components, from nutrients to microRNAs, molecules with broad regulatory properties present in large quantities in milk. Characterization of these components has been performed in several species, such as humans and bovine, depending on the stages of lactation. Here, we have studied the variation in milk microRNA composition according to genetic background. Using high throughput sequencing, we have characterized and compared the milk miRNomes of Holstein and Normande cattle, dairy breeds with distinct milk production features, in order to highlight microRNAs that are essential for regulation of the lactation process. In Holstein and Normande milk, 2,038 and 2,030 microRNAs were identified, respectively, with 1,771 common microRNAs, of which 1,049 were annotated and 722 were predicted. The comparison of the milk miRNomes of two breeds allowed to highlight 182 microRNAs displaying significant differences in the abundance. They are involved in the regulation of lipid metabolism and mammary morphogenesis and development, which affects lactation. Our results provide new insights into the regulation of molecular mechanisms involved in milk production.
Project description:Analysis of key genes and gene networks determining milk productivity of the dairy HF cows Transcriptomes were compared of in the mammary glands of the healthy lactating Holstein Friesian cows of the high- (average 11097 kg milk/lactation) and low- (average 6956 kg milk/lactation) milk yield.
Project description:We have reported that microRNAs are present in human, bovine, and rat milk whey. Milk whey miRNAs were resistant to acidic condition and to RNase. Thus, milk miRNAs were thought to be present packaged into membrane vesicles like exosome. However, body fluid miRNAs have been reported that there are in different forms. To clarify which miRNAs species are exist in exosome and which species are exist in another form, we used bovine raw milk and purified total RNA from exosome fraction and ultracentrifugated supernatant fraction, and analyzed by miRNA microarray.
Project description:We have reported that microRNAs are present in human, bovine, and rat milk whey. Milk whey miRNAs were resistant to acidic condition and to RNase. Thus, milk miRNAs were thought to be present packaged into membrane vesicles like exosome. However, body fluid miRNAs have been reported that there are in different forms. To clarify which miRNAs species are exist in exosome and which species are exist in another form, we used bovine raw milk and purified total RNA from exosome fraction and ultracentrifugated supernatant fraction, and analyzed by miRNA microarray.
Project description:Early detection of bovine subclinical mastitis may improve treatment strategies and reduce the use of antibiotics. Herein, individual milk samples from Holstein cows affected by subclinical mastitis induced by S. agalactiae and Prototheca spp. were analyzed by untargeted and targeted mass spectrometry approaches to assess changes in their peptidome profiles and identify new potential biomarkers of the pathological condition. Results showed a higher amount of peptides in milk positive at the bacteriological examination when compared with the negative control. However, the different pathogens seemed not to trigger specific effects on milk peptidome. The peptides that best distinguish positive from negative samples are mainly derived from the most abundant milk proteins, especially from β- and αs1-casein, but also include the antimicrobial peptide casecidin 17. These results provide new insights into the physiopathology of mastitis. Upon further validation, the panel of potential discriminant peptides could help to the development of new diagnostic and therapeutic tools.