Project description:Global gene expression signatures was analysed through microarray expression profiling as a discovery platform to identify up and down regulated ESTs that represent genes involved in metabolic pathways in the leaf, fibrous root and storage root (tuber forming root) of sweetpotato (Ipomoea batatas) as affcted by high temperature stress (40oC) compared to ambient temperature (30oC). Also Global gene expression signatures was analysed by the same procedure to explore up and down regulated ESTs in tuberous root of sweet potato in comparison with fibrous root of Ipomoea cornea and identify unique ESTs that represent genes involved in tuber formation in sweet potato.
Project description:To screen genes related to the development of sweet potato tuberous roots, the high throughput sequencing of different stages of sweet potato tuberous roots was performed. The fibrous roots (FR; roots at 20 dap), developing tuberous roots (DR; roots at 60 dap) and mature tuberous roots (MR; roots at 120 dap) of Ipomoea batatas (L.) Taizhong 6 and MBP3 overexpressed lines were used for transcriptome analysis. Totally, we identified 5488 differentially expressed genes between different stage tuberous roots of Taizhong6 and 14312 differentially expressed genes between the tuberous roots of Taizhong6 and MBP3 overexpressed lines, by calculating the gene FPKM in each sample and conducting differential gene analysis. This study provides a foundation for the mechanism analysis of sweet potato tuberous root development.
Project description:A Microarray experiment was carried out in order to establish the genetic processes and control mechanism involved during storage root formation in Sweetpotato. A Sweetpotato cDNA chip was created from five varieties covering all the growth stages between them. mRNA from primordial root, fibrous root, pencil root and thick storage root was extracted from four varieties of Sweetpotato. The expression profiles were compared between the root growth stages. Keywords: Transcription profiling
Project description:The formation and development of storage roots is an intricate process regulated via a complex transcriptional regulatory network. To significantly advance our understanding of the molecular mechanisms governing storage root initiation and development in sweet potato, we performed a comprehensive analysis of transcriptome dynamics during root development.
Project description:A Microarray experiment was carried out in order to establish the genetic processes and control mechanism involved during storage root formation in Sweetpotato. A Sweetpotato cDNA chip was created from five varieties covering all the growth stages between them. mRNA from primordial root, fibrous root, pencil root and thick storage root was extracted from four varieties of Sweetpotato. The expression profiles were compared between the root growth stages. Keywords: Transcription profiling One condition experiment with time as a single parameter. Four different varieties of Sweetpotato (SPK004, Beauregard, Tanzania and Feng Shou Bai) with four growth stages (i.e. 3 weeks, 6 weeks, 10 weeks and 16 weeks) each were used for the comparison. Two pairs of biological replicates and one dye swap for each time point and variety were taken.
Project description:Sweet potato (Ipomoea batatas), a starchy root and tuber crop, is an important source of carbohydrates for the human diet and a valuable resource in many industrial applications. Here, we performed a spatiotemporally distributed proteome analysis using leaves and storage roots of two F1 individuals, H283 (high starch) and L423 (low starch), of similar high yield to underly regulatory networks governing starch accumulation.