Project description:Streptococcus pneumoniae of serotype 3 possess a mucoid capsule and cause disease associated with high mortality rates relative to other pneumococci. Phylogenetic analysis of a complete reference genome and 81 draft sequences from clonal complex 180, the predominant serotype 3 clone in much of the world, found most sampled isolates belonged to a clade affected by few diversifying recombinations. However, other isolates indicate significant genetic variation has accumulated over the clonal complex's entire history. Two closely related genomes, one from the blood and another from the cerebrospinal fluid, were obtained from a patient with meningitis. The pair differed in their behaviour in a mouse model of disease and in their susceptibility to antimicrobials, with at least some of these changes attributable to a mutation that up-regulated the patAB efflux pump. This indicates clinically important phenotypic variation can accumulate rapidly through small alterations to the genotype. [Data is also available from http://bugs.sgul.ac.uk/E-BUGS-144]
Project description:Cable bacteria of the family Desulfobulbaceae form centimeter-long filaments comprising thousands of cells. They occur worldwide in the surface of aquatic sediments, where they connect sulfide oxidation with oxygen or nitrate reduction via long-distance electron transport. In the absence of pure cultures, we used single-filament genome amplification and metagenomics to retrieve draft genomes of three marine Candidatus Electrothrix and one freshwater Ca. Electronema species. These genomes contain >50% of unknown genes but still largely share their core genomic makeup with sulfate-reducing and sulfur-disproportionating Desulfobulbaceae, with few genes lost and 212 unique genes conserved among cable bacteria. Last common ancestor analysis indicated gene divergence and lateral gene transfer as equally important origins of these unique genes. With support from metaproteomic data of Ca. Electronema, the genomes suggest that cable bacteria oxidize sulfide by inversing the canonical sulfate reduction pathway and fix CO2 using the Wood-Ljungdahl pathway. Cable bacteria show limited organotrophic potential, may assimilate smaller organic acids and alcohols, fix N2, and synthesize polyphosphates and polyglucose as storage compounds; several of these traits were confirmed by cell-level experimental analyses. We propose a model for electron flow from sulfide to oxygen that involves periplasmic cytochromes, type IV pili as integral components of conductive periplasmic fibers, and periplasmic oxygen reduction. This model proposes that an active cable bacterium gains energy in the anodic, sulfide-oxidizing cells, while cells in the oxic zone flare off electrons through intense cathodic oxygen respiration without energy conservation; this peculiar form of multicellularity seems unparalleled in the microbial world.