Project description:Variability of meningioma growth, even within benign subgroup, makes some remain unaltered, while others grow fast despite an appended radiotherapy. Biomarkers that differentiate between less and more aggressive meningiomas would therefore have a significant clinical benefit in prediction of their biological behaviour. The aim of the study was to identify new candidate miRNAs enabling better and proper prediction of meningioma recurrence. We used miRNA 4.0 array (Applied Biosystems, Foster City, CA, USA) to detect miRNA profiles in 44 primary meningioma patients (19 with subsequent recurrence) and 5 healthy controls. Moreover, miRNA profiles were analyzed in 15 secondary meningiomas.
Project description:DNA methylation from human meningioma samples that were also profiled for spatial heterogeneity analysis. Some samples represent spatially distinct regions, punched using a 2mm core punch from FFPE blocks in a given tumor. Other samples represent serial tumor samples at index treatment and then recurrence.
Project description:BackgroundMicroarray technology has become a widely used tool in the biological sciences. Over the past decade, the number of users has grown exponentially, and with the number of applications and secondary data analyses rapidly increasing, we expect this rate to continue. Various initiatives such as the External RNA Control Consortium (ERCC) and the MicroArray Quality Control (MAQC) project have explored ways to provide standards for the technology. For microarrays to become generally accepted as a reliable technology, statistical methods for assessing quality will be an indispensable component; however, there remains a lack of consensus in both defining and measuring microarray quality.ResultsWe begin by providing a precise definition of microarray quality and reviewing existing Affymetrix GeneChip quality metrics in light of this definition. We show that the best-performing metrics require multiple arrays to be assessed simultaneously. While such multi-array quality metrics are adequate for bench science, as microarrays begin to be used in clinical settings, single-array quality metrics will be indispensable. To this end, we define a single-array version of one of the best multi-array quality metrics and show that this metric performs as well as the best multi-array metrics. We then use this new quality metric to assess the quality of microarry data available via the Gene Expression Omnibus (GEO) using more than 22,000 Affymetrix HGU133a and HGU133plus2 arrays from 809 studies.ConclusionsWe find that approximately 10 percent of these publicly available arrays are of poor quality. Moreover, the quality of microarray measurements varies greatly from hybridization to hybridization, study to study, and lab to lab, with some experiments producing unusable data. Many of the concepts described here are applicable to other high-throughput technologies.
Project description:Comparison of the gene expression profiles with meningiomas of different grading. 24 primary meningioma cultures from surgical specimen were maintained to primary meningioma cultures.
Project description:We performed expression profiling of 24 meningioma and two dura controls analyzing 55000 transcripts including 18300 known genes. We compared expression in meningioma vs. dura, expression of low grade (WHO I) vs. higher-grade (WHO II and WHO IIII) tumors and expression of meningothelial and syncytial meningioma vs. fibroblastic meningioma. Gene expression was analysed in 24 meningioma including eight of each WHO grade and two dura controls analyzing 55000 transcripts including 18300 known genes.
Project description:BACKGROUND: Natural antisense transcripts (NATs) are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded) or a different locus (trans-encoded). They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation. NATs give rise to sense-antisense transcript pairs and the number of these identified has escalated greatly with the availability of DNA sequencing resources and public databases. Traditionally, NATs were identified by the alignment of full-length cDNAs or expressed sequence tags to genome sequences, but an alternative method for large-scale detection of sense-antisense transcript pairs involves the use of microarrays. In this study we developed a novel protocol to assay sense- and antisense-strand transcription on the 55 K Affymetrix GeneChip Wheat Genome Array, which is a 3' in vitro transcription (3'IVT) expression array. We selected five different tissue types for assay to enable maximum discovery, and used the 'Chinese Spring' wheat genotype because most of the wheat GeneChip probe sequences were based on its genomic sequence. This study is the first report of using a 3'IVT expression array to discover the expression of natural sense-antisense transcript pairs, and may be considered as proof-of-concept. RESULTS: By using alternative target preparation schemes, both the sense- and antisense-strand derived transcripts were labeled and hybridized to the Wheat GeneChip. Quality assurance verified that successful hybridization did occur in the antisense-strand assay. A stringent threshold for positive hybridization was applied, which resulted in the identification of 110 sense-antisense transcript pairs, as well as 80 potentially antisense-specific transcripts. Strand-specific RT-PCR validated the microarray observations, and showed that antisense transcription is likely to be tissue specific. For the annotated sense-antisense transcript pairs, analysis of the gene ontology terms showed a significant over-representation of transcripts involved in energy production. These included several representations of ATP synthase, photosystem proteins and RUBISCO, which indicated that photosynthesis is likely to be regulated by antisense transcripts. CONCLUSION: This study demonstrated the novel use of an adapted labeling protocol and a 3'IVT GeneChip array for large-scale identification of antisense transcription in wheat. The results show that antisense transcription is relatively abundant in wheat, and may affect the expression of valuable agronomic phenotypes. Future work should select potentially interesting transcript pairs for further functional characterization to determine biological activity.
Project description:BackgroundAs gene expression signatures may serve as biomarkers, there is a need to develop technologies based on mRNA expression patterns that are adaptable for translational research. Xceed Molecular has recently developed a Ziplex technology, that can assay for gene expression of a discrete number of genes as a focused array. The present study has evaluated the reproducibility of the Ziplex system as applied to ovarian cancer research of genes shown to exhibit distinct expression profiles initially assessed by Affymetrix GeneChip analyses.MethodsThe new chemiluminescence-based Ziplex gene expression array technology was evaluated for the expression of 93 genes selected based on their Affymetrix GeneChip profiles as applied to ovarian cancer research. Probe design was based on the Affymetrix target sequence that favors the 3' UTR of transcripts in order to maximize reproducibility across platforms. Gene expression analysis was performed using the Ziplex Automated Workstation. Statistical analyses were performed to evaluate reproducibility of both the magnitude of expression and differences between normal and tumor samples by correlation analyses, fold change differences and statistical significance testing.ResultsExpressions of 82 of 93 (88.2%) genes were highly correlated (p < 0.01) in a comparison of the two platforms. Overall, 75 of 93 (80.6%) genes exhibited consistent results in normal versus tumor tissue comparisons for both platforms (p < 0.001). The fold change differences were concordant for 87 of 93 (94%) genes, where there was agreement between the platforms regarding statistical significance for 71 (76%) of 87 genes. There was a strong agreement between the two platforms as shown by comparisons of log2 fold differences of gene expression between tumor versus normal samples (R = 0.93) and by Bland-Altman analysis, where greater than 90% of expression values fell within the 95% limits of agreement.ConclusionOverall concordance of gene expression patterns based on correlations, statistical significance between tumor and normal ovary data, and fold changes was consistent between the Ziplex and Affymetrix platforms. The reproducibility and ease-of-use of the technology suggests that the Ziplex array is a suitable platform for translational research.
Project description:BackgroundIt is known from recent studies that more than 90% of human multi-exon genes are subject to Alternative Splicing (AS), a key molecular mechanism in which multiple transcripts may be generated from a single gene. It is widely recognized that a breakdown in AS mechanisms plays an important role in cellular differentiation and pathologies. Polymerase Chain Reactions, microarrays and sequencing technologies have been applied to the study of transcript diversity arising from alternative expression. Last generation Affymetrix GeneChip Human Exon 1.0 ST Arrays offer a more detailed view of the gene expression profile providing information on the AS patterns. The exon array technology, with more than five million data points, can detect approximately one million exons, and it allows performing analyses at both gene and exon level. In this paper we describe BEAT, an integrated user-friendly bioinformatics framework to store, analyze and visualize exon arrays datasets. It combines a data warehouse approach with some rigorous statistical methods for assessing the AS of genes involved in diseases. Meta statistics are proposed as a novel approach to explore the analysis results. BEAT is available at http://beat.ba.itb.cnr.it.ResultsBEAT is a web tool which allows uploading and analyzing exon array datasets using standard statistical methods and an easy-to-use graphical web front-end. BEAT has been tested on a dataset with 173 samples and tuned using new datasets of exon array experiments from 28 colorectal cancer and 26 renal cell cancer samples produced at the Medical Genetics Unit of IRCCS Casa Sollievo della Sofferenza.To highlight all possible AS events, alternative names, accession Ids, Gene Ontology terms and biochemical pathways annotations are integrated with exon and gene level expression plots. The user can customize the results choosing custom thresholds for the statistical parameters and exploiting the available clinical data of the samples for a multivariate AS analysis.ConclusionsDespite exon array chips being widely used for transcriptomics studies, there is a lack of analysis tools offering advanced statistical features and requiring no programming knowledge. BEAT provides a user-friendly platform for a comprehensive study of AS events in human diseases, displaying the analysis results with easily interpretable and interactive tables and graphics.