Project description:RNA-Seq technique was used to obtain the transcriptome map of Prochlorococcus MED4, including operons, untranslated regions, non-coding RNAs, and novel genes. Genome-wide expression profiles revealed that three factors contribute to core genome stabilization. First, a negative correlation between gene expression levels and protein evolutionary rates was observed. Highly expressed genes were overrepresented in the core genome but not in the flexible genome. Gene necessity was determined as a second powerful constraint on genome evolution through functional enrichment analysis. Third, quick mRNA turnover may increase corresponding proteins’ fidelity among genes that were abundantly expressed. Together, these factors influence core genome stabilization during MED4 genome evolution.
Project description:Prochlorococcus is an obligate marine microorganism which are dominant autotroph in tropical and subtropical central oceans. However, what is the low salinity boundary and how Prochlorococcus would response to low salinity exposure is still unknown. In this study, we first tested the growing salinity range of two Prochlorococcus strains, NATL1A and MED4, and then compared the global transcriptome of their low salinity acclimated cells and cells growing in normal seawater salinity. We found that MED4 could be acclimated in the lowest salinity of 25% and NATL1A could be acclimated in the lowest salinity of 28%. Measurement of the effective quantum yield of PSII photochemistry (Fv/Fm) indicated that both strains were stressed when growing in salinity lower than 34%. The transcriptomic response of NATL1A and MED4 were approximately different, with much more genes having changed transcript abundance in NATL1A than in MED4. To cope with low salinity, NATL1A downregulated the transcript of most genes involved in translation, ribosomal structure and biogenesis, while MED4 upregulated those genes. Moreover, low salinity acclimated NATL1A cells suppressed ATP-producing genes and induced the expression of photosynthesis related genes, while low salinity acclimated MED4 upregulated ATP-producing genes and downregulated photosynthesis related genes. These results indicate that the response to low salinity stress of different Prochlorococcus strains could be distinct. The study provided the first glimpse into the growing salinity range of Prochlorococcus cells and their global gene expression changes due to low salinity stress.
Project description:Prochlorococcus contributes significantly to ocean primary productivity. The link between primary productivity and iron in specific ocean regions is well established and iron limitation of Prochlorococcus cell division rates in these regions has been shown. However, the extent of ecotypic variation in iron metabolism among Prochlorococcus and the molecular basis for differences is not understood. Here, we examine the growth and transcriptional response of Prochlorococcus strains, MED4 and MIT9313, to changing iron concentrations. During steady state, MIT9313 sustains growth at an order-of-magnitude lower iron concentration than MED4. To explore this difference, we measured the whole-genome transcriptional response of each strain to abrupt iron starvation and rescue. Only four of the 1159 orthologs of MED4 and MIT9313 were differentially expressed in response to iron in both strains. However, in each strain, the expression of over a hundred additional genes changed, many of which are in labile genomic regions, suggesting a role for lateral gene transfer in establishing diversity of iron metabolism among Prochlorococcus. Furthermore, we found that MED4 lacks three genes near the iron-deficiency-induced gene (idiA) that are present and induced by iron stress in MIT9313. These genes are interesting targets for studying the adaptation of natural Prochlorococcus assemblages to local iron conditions as they show more diversity than other genomic regions in environmental metagenomic databases.