Project description:The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation, with communities from surface ocean waters and agricultural soils significantly different from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in the agricultural soils and lowest in surface ocean waters.
2018-10-19 | GSE121473 | GEO
Project description:nosZ gene amplicon sequencing of Baiyang lake samples
Project description:Rhizobia living as microsymbionts inside nodules have stable access to carbon substrates, but also have to survive as free-living bacteria in soil where they are starved for carbon and energy most of the time. Many rhizobia can denitrify, thus switch to anaerobic respiration under low O2 tension using N-oxides as electron acceptors. The cellular machinery regulating this transition is relatively well-known from studies under optimal laboratory conditions, while little is known about this regulation in starved organisms. It is, for example, not known if the strong preference for N2O- over NO3--reduction in bradyrhizobia is retained under carbon limitation. Here we show that starved cultures of a Bradyrhizobium strain with respiration rates 1-18% of well-fed cultures, reduced all available N2O before touching provided NO3-. These organisms, which carry out complete denitrification, have the periplasmic nitrate reductase NapA but lack the membrane-bound nitrate reductase NarG. Proteomics showed similar levels of NapA and NosZ (N2O reductase), excluding that the lack of NO3- reduction was due to low NapA abundance. Instead, this points to a metabolic-level phenomenon where the bc1 complex, which channels electrons to NosZ via cytochromes, is a much stronger competitor for electrons from the quinol pool than the NapC enzyme, which provides electrons to NapA via NapB. The results contrast the general notion that NosZ activity diminishes under carbon limitation and suggest that bradyrhizobia carrying NosZ can act as strong sinks for N2O under natural conditions, implying that this criterion should be considered in the development of biofertilizers.
Project description:Genome editing was conducted on a t(3;8) K562 model to investigate the effects of deleting different modules or CTCF binding sites within the MYC super-enhancer. To check mutations after targeting with CRISPR-Cas9 we performed amplicon sequencing using the Illumina PCR-based custom amplicon sequencing method using the TruSeq Custom Amplicon index kit (Illumina). The first PCR was performed using Q5 polymerase (NEB), the second nested PCR with KAPA HiFi HotStart Ready mix (Roche). Samples were sequenced paired-end (2x 250bp) on a MiSeq (Illumina).
Project description:OBJECTIVES: Amplification of the 11q13 locus is commonly observed in a number of human cancers including both breast and ovarian cancer. Cyclin D1 and EMS1 have been implicated as candidate oncogenes involved in the emergence of amplification at this locus. Detailed analysis of the 11q13 amplicon in breast cancer led to the discovery of four regions of amplification suggesting the involvement of other genes. Here, we investigate the role of EMSY, a recently described BRCA2 interacting protein, as a key element of the 11q13 amplicon in ovarian cancer. EMSY maps to 11q13.5 and is amplified in 13% of breast and 17% of ovarian carcinomas. METHODS: EMSY amplification was assessed by fluorescent in-situ hybridization (FISH) in 674 ovarian cancers in a tissue microarray and correlated with histopathological subtype and tumor grade. A detailed map of the 11q13 amplicon in 51 cases of ovarian cancer was obtained using cDNA-array-based comparative genomic hybridization (aCGH). To further characterize the role of EMSY within this amplicon, we evaluated both the amplification profiles and RNA expression levels of EMSY and two other genes from the 11q13 amplicon in an additional series of 22 ovarian carcinomas. : EMSY amplification was seen in 52/285 (18%) high grade papillary serous carcinomas, 4/27 (15%) high grade endometrioid carcinomas, 3/38 (8%) clear cell carcinomas, and 3/10 (30%) undifferentiated carcinomas. aCGH mapping of 11q13 in ovarian cancer showed that EMSY localized to the region with the highest frequency of copy number gain. Cyclin D1 and EMS1 showed a lower frequency of copy number gain. A highly significant correlation between EMSY gene amplification and RNA expression was also observed (P = 0.0001). This was a stronger correlation than for other genes at 11q13 including Cyclin D1 and PAK1. CONCLUSIONS: These findings support the role of EMSY as a key oncogene within the 11q13 amplicon in ovarian cancer. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set