Project description:Lactobacillus helveticus is a rod-shaped lactic acid bacterium that is widely used in the manufacture of fermented dairy foods and for production of bioactive peptides from milk proteins. Although L. helveticus is commonly associated with milk environments, phylogenetic studies show it is closely related to an intestinal species, Lactobacillus acidophilus, which has been shown to impart probiotic health benefits to humans. This relationship has fueled a prevailing hypothesis that L. helveticus is a highly specialized derivative of L. acidophilus which has adapted to acidified whey. However, L. helveticus has also been sporadically recovered from non-dairy environments, which argues the species may not be as highly specialized as is widely believed. This study employed genome sequence analysis and comparative genome hybridizations to investigate genomic diversity among L. helveticus strains collected from cheese, whey, and whiskey malt, as well as commercial cultures used in manufacture of cheese or bioactive dairy foods. Results revealed considerable variability in gene content between some L. helveticus strains, and indicated the species should not be viewed as a strict dairy-niche specialist. In addition, comparative genomic analyses provided new insight on several industrially and ecologically important attributes of L. helveticus that may facilitate commercial strain selection.
Project description:Lactobacillus helveticus is a rod-shaped lactic acid bacterium that is widely used in the manufacture of fermented dairy foods and for production of bioactive peptides from milk proteins. Although L. helveticus is commonly associated with milk environments, phylogenetic studies show it is closely related to an intestinal species, Lactobacillus acidophilus, which has been shown to impart probiotic health benefits to humans. This relationship has fueled a prevailing hypothesis that L. helveticus is a highly specialized derivative of L. acidophilus which has adapted to acidified whey. However, L. helveticus has also been sporadically recovered from non-dairy environments, which argues the species may not be as highly specialized as is widely believed. This study employed genome sequence analysis and comparative genome hybridizations to investigate genomic diversity among L. helveticus strains collected from cheese, whey, and whiskey malt, as well as commercial cultures used in manufacture of cheese or bioactive dairy foods. Results revealed considerable variability in gene content between some L. helveticus strains, and indicated the species should not be viewed as a strict dairy-niche specialist. In addition, comparative genomic analyses provided new insight on several industrially and ecologically important attributes of L. helveticus that may facilitate commercial strain selection. 42 samples were hybridized to the microarray chip, which contains probe sequences from L. helveticus CNRZ32. CNRZ32 was also hybridized and used as the reference sample. Data from the microarray was statistically analyzed using the R software. Samples were compared to the reference (CNRZ32) to investigate genome diversity amoung L. helveticus strains,
Project description:From a long time ago, supplementation of fermented enzyme foods could have worked health effects on the body in the east nevertheless, only a few studies reported functions of them such as weight loss and metabolic syndrome. Thus, it is necessary to be verified whether supplementation of fermented enzyme foods can act in the body as a functional material. Therefore, we investigated the anti-obesity effects of fermented mixed grain with digestive enzymes (FMG) in high-fat diet induced mice. Sixty C57BL/6J mice were divided into six dietary groups and fed a normal diet (ND), a high-fat diet (HFD), Bacilus Coagulans group, steamed grain group, low-dose fermented mixed grain group(L-FMG), high-dose fermented mixed grain group (H-FMG) supplement for 12 weeks. After sacrificing, body weight and body fat mass in H-FMG group were significantly decreased compared to HFD group with a simultaneous decrease in plasma lipids. Also, H-FMG significantly decreased the blood glucose and improved the glucose tolerance compared to HFD group. Moreover high-dose FMG supplementation dramatically decreased the levels of inflammatory cytokines which secreted from adipocyte. Taken together, our findings suggest that H-FMG ameliorate high fat-diet induced obesity and its complication and could be used as a potential preventive agent for obesity.
Project description:Background: Lactobacillus plantarum is found in a variety of fermented foods and as such, consumed for centuries. Some strains are natural inhabitants of the human gastro-intestinal tract and like other Lactobacillus species, L. plantarum has been extensively studied for its immunomodulatory properties and its putative health-promoting effects (probiotic). Being the first line of host defense intestinal epithelial cells (IEC) are key players in the recognition and initiation of responses to gut microorganisms. Results: Using high-density oligonucleotide microarrays we examined the gene expression profiles of differentiated Caco-2 cells exposed to various doses of L. plantarum. In addition, the effects were correlated to monolayer permeability studies and measurement of lactic acid production. A transcriptional dose-dependent IEC response to L. plantarum was found. Incubation of Caco-2 with a low bacterial dose induced a specific response, not due to cytotoxicity or production of lactic acid, including modulation of cell cycle and cell signaling functions. Exposure of Caco-2 cells to larger amounts of bacteria, accompanied by the production of lactic acid and glucose depletion, provoked increased permeability and supposed non-specific defense responses. Conclusions: These results suggest that IEC are able to sense and react to the presence of gut bacteria. This study provides the first description of global transcriptional response of human IEC to a commensal lactic acid bacterium, and it shows the importance of choosing physiological bacterial doses to prevent the observation of non-specific host reactions. Caco-2 cells were exposed for 10h to Lactobacillus. Fourteen samples are analyzed: 4 control Caco-2, 4 Caco-2 exposed to a low dose (10) of Lactobacillus, 4 Caco-2 exposed to a medium dose (100) of Lactobacillus, 2 Caco-2 exposed to a high dose (1000) of Lactobacillus. All 14 RNA samples are labeled with Cy5 and hybridized to a common reference (undifferentiated Caco-2, untreated) RNA labeled with Cy3
Project description:Lactobacillus plantarum WCFS1 was differentially fermented in 29 different fermentations according to a factorial, combinatorial scheme that included variations in growth temperature (28 or 37C), NaCl concentration (0 or 0.3M), pH (5.2, 5.8, 6.4), as well as oxygen (N2 or air) and amino acid availability (1.1 or 2x concentration).
Project description:Total blood white blood cells from a FPIES subject were treated with individual treatmens of 2 foods that were safe for the subject (pear and breast milk), two foods that were triggers (quinoa and sweet potato), and 19 foods of unknown status for the subject. These treatments were compared to LPS treatment and untreated.
Project description:Mycotoxin citrinin (CTN) is a contaminant widely found in foods, feeds, and fermented health supplements. To investigate the potential neurotoxic effect of CTN, RNA-seq was performed on human neuroblastoma cells SH-SY5Y exposed to 0, 10, and 20 μM CTN for 72 h. The transcriptomic profile revealed novel underlying mechanisms of CTN neurotoxicity, providing useful information for risk assessment of consuming CTN-contaminated grains and its commercial food products.