Project description:Bats harbour various viruses without severe symptoms and act as natural reservoirs. This tolerance of bats toward viral infections is assumed to be originated from the uniqueness of their immune system. However, how the innate immune response varies between primates and bats remains unclear. To illuminate differences in innate immune responses among animal species, we performed a comparative single-cell RNA-sequencing analysis on peripheral blood mononuclear cells (PBMCs) from four species including Egyptian fruit bats inoculated with various infectious stimuli.
Project description:Jamaican fruit bats (Artibeus jamaicensis) naturally harbor a wide range of viruses of human relevance. These infections are typically mild in bats, suggesting unique features of their immune system. To better understand the immune response to viral infections in bats, we infected Jamaican fruit bats with the bat-derived influenza A virus H18N11. Using comparative single-cell RNA sequencing, we generated a single-cell atlas of the Jamaican fruit bat intestine and mesentery, the target organs of infection. Gene expression profiling showed that H18N11 infection resulted in a moderate induction of interferon-stimulated genes and transcriptional activation of immune cells. H18N11 infection was prominent in various leukocytes, including macrophages, B cells, and NK/T cells. Confirming these findings, human leukocytes, particularly macrophages, were also susceptible to H18N11, highlighting the zoonotic potential of this virus. Our study provides insight into the virus-host relationship and thus serves as a fundamental resource for further characterization of bat immunology.
2024-05-06 | GSE243982 | GEO
Project description:EMG produced TPA metagenomics assembly of the PRJNA344863 data set (Viral Metagenomics of fecal samples of fruit bats).
| PRJEB31414 | ENA
Project description:EMG produced TPA metagenomics assembly of the PRJNA344863 data set (Viral Metagenomics of fecal samples of fruit bats).
| PRJEB31341 | ENA
Project description:Viral metagenomics survey of bats from Saudi Arabia
| PRJNA487099 | ENA
Project description:Viral metagenomics for detection of RVA in bats
Project description:Bats are the most important natural reservoirs for a variety of emerging viruses that cause several illnesses in humans and other mammals. Increased viral shedding by bats is thought to be linked to an increased ability of many bat species to tolerate viral infection. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, is thought to have originated in bats, since viruses with high sequence similarity have been detected in bat feces. However, there is no robust in vitro model for assessing the SARS-CoV-2 infection in the bat GI tract. Here, we established gastrointestinal organoid cultures from Jamaican fruit bats (JFB, Artibeus jamaicensis), which replicated the characteristic morphology of the gastrointestinal epithelium and showed tissue specific gene expression patterns and cell differentiation. To analyze whether JFB intestinal epithelial cells are susceptible to SARS-CoV-2, we performed in vitro infection experiments. Increased SARS-CoV-2 RNA was found in both cell lysates and supernatants from the infected organoids after 48 h, and sgRNA also was detected, indicating that the JFB intestinal epithelium supports limited viral replication. However, no infectious virus was released into the culture media, and no cytopathic effects were observed. Gene expression studies revealed a significant induction of type I interferon and inflammatory cytokine genes in response to active SARS-CoV-2 virus but not to TLR agonist treatment. Untargeted analysis of the organoid proteome using data-independent acquisition mass spectrometry (DIA-MS) revealed a significant increase in proteins and pathways associated with inflammatory signaling, cell turnover and repair, and SARS-CoV-2 infection. Collectively, our data suggest that primary intestinal epithelial cells from JFBs are largely resistant to SARS-CoV-2 infection and cell damage, likely because they are able to mount a strong antiviral interferon and regenerative response upon infection.
Project description:Bats harbor highly virulent viruses that can infect other mammals, including humans, posing questions about their immune tolerance mechanisms. Bat cells employ multiple strategies to limit virus replication and virus-induced immunopathology, but the coexistence of bats and fatal viruses remains poorly understood. Here, we investigated the antiviral RNA interference (RNAi) pathway in bat cells and discovered that they have an enhanced antiviral RNAi response, producing canonical viral small interfering RNAs (vsiRNAs) upon Sindbis virus (SINV) infection that were missing in human cells. Disruption of Dicer function resulted in increased viral load for three different RNA viruses in bat cells, indicating an interferon-independent antiviral pathway. Furthermore, our findings reveal the simultaneous engagement of Dicer and pattern-recognition receptors (PRRs), such as retinoic acid-inducible gene I (RIG-I), with double-stranded RNA, suggesting that Dicer attenuates the interferon response initiation in bat cells. These insights advance our comprehension of the distinctive strategies bats employ to coexist with viruses.