Project description:Crown rot of wheat, caused by Fusarium pseudograminearum and other Fusarium species is an important disease globally. To understand the host response to challenge by Fp, we examined gene exression changes in the stem base of the wheat variety Kennedy, following inoculation with macroconidia using the Affymetrix GeneChip Wheat Genome Array. Induced genes included mainly those with defensive functions such as genes encoding anti-microbial proteins as well as oxidative stress-related proteins, signalling molecules, and proteins involved in both primary and secondary metabolism. This study is the first comprehensive analysis of the wheat transcriptome during crown rot infection and provides new insights into the host processes involved in plant defence against this pathogen. Experiment Overall Design: There are six samples, three F. pseudograminearum inoculated samples and three mock inoculated samples. Each sample consists of 2cm of stem base from approximately 20 plants.
Project description:Crown rot of wheat, caused by Fusarium pseudograminearum and other Fusarium species is an important disease globally. To understand the host response to challenge by Fp, we examined gene exression changes in the stem base of the wheat variety Kennedy, following inoculation with macroconidia using the Affymetrix GeneChip Wheat Genome Array. Induced genes included mainly those with defensive functions such as genes encoding anti-microbial proteins as well as oxidative stress-related proteins, signalling molecules, and proteins involved in both primary and secondary metabolism. This study is the first comprehensive analysis of the wheat transcriptome during crown rot infection and provides new insights into the host processes involved in plant defence against this pathogen.
Project description:Nuclear-localized RNA binding proteins are involved in various aspects of RNA metabolism, which in turn modulates gene expression. However, the functions of nuclear-localized RNA binding proteins in plants are poorly understood. Here we report the functions of two proteins containing RNA recognition motifs, At RZ-1B and At RZ-1C, in Arabidopsis. At RZ-1B and At RZ-1C were localized to nuclear speckles and interacted with a spectrum of serine/arginine-rich (SR) proteins through their C-termini. At RZ-1C preferentially bound to purine-rich RNA sequences in vitro through its N-terminal RNA recognition motif. Disrupting the RNA-binding activity of At RZ-1C with SR proteins through over-expression of the C-terminus of At RZ-1C conferred defective phenotypes similar to those observed in At rz-1b/At rz-1c double mutants, including delayed seed germination, reduced stature, and serrated leaves. Loss of function of At RZ-1B and At RZ-1C was accompanied by defective splicing of many genes and global perturbation of gene expression. In addition, we found that At RZ-1C directly targeted FLC, promoting efficient splicing of FLC introns and likely also repressing FLC transcription. Our findings highlight the critical role of At RZ-1B/1C in regulating RNA splicing, gene expression, and many key aspects of plant development via interaction with proteins including SR proteins.