Project description:To determine Sigma 54 (SigL) reglons in Bacillus thuringiensis HD73 strain, A sigLmutant, HD(ΔsigL::kan), was constructed with insertion of kanamycin resistance gene cassete. We have employed whole genome microarray expression profiling as a discovery platform to identify the difference of gene expression between mutant and wild-type strains.
Project description:Bacillus thuringiensis has insecticidal activity against a variety of important agricultural pests and exhibits good bacteriostatic resistance to a variety of plant pathogens, and recentily study have shown that two strains of Bt (B88-82 and RG1-6 Strain) can induce the tomato to produce resistance to R. solanacearum. However, only the induced signal pathway has been studied, and its active substances are not reported. The aim of this study was to further explore the Bt strain that could induce plant disease resistance and study the induced activity of the Bt strain, and to study the signal pathway induced by transcriptional sequencing and fluorescence quantitative PCR. The results showed that there were 303 differentially expressed genes in rape after induction of 4F5 strain, among which 86 genes were up-regulated and 217 genes weredown-regulated. The result of 4BM1 strain induction was induced by transcriptase sequencing. There were 126 differentially expressed genes in rape. Among which 64 genes were up-regulated and 62 genes were down-regulated. The analysis of these differentialexpression genes revealed that they contained Salicylic acid pathway and Ethylene pathway-related genes, which need to be further verified.
Project description:We investigated the gene expression and metabolic regulatory mechanisms associated with the high-level accumulation of ICPs by performing the transcriptomics analysis of B. thuringiensis strain CT-43, using Illumina high throughout sequencing (RNA-seq) technique.
Project description:To determine Sigma 54 (SigL) reglons in Bacillus thuringiensis HD73 strain, A sigLmutant, HD(M-NM-^TsigL::kan), was constructed with insertion of kanamycin resistance gene cassete. We have employed whole genome microarray expression profiling as a discovery platform to identify the difference of gene expression between mutant and wild-type strains. 2 ml samples were separately harvested from B. thuringiensis HD73 and HD(M-NM-^TsigL::kan) strains grown in SchaefferM-bM-^@M-^Ys sporulation medium (SSM) at stages T7 of stationary phase (7 hours after the end of the exponential phase). Three independent repeats were performed for each stain.
Project description:microRNAs (miRNAs) are small non-coding RNA-molecules that influence translation by binding to the target gene mRNA. Many miRNAs are found in nested arrangements within introns, or exons, of larger protein-coding host genes. miRNAs and host genes in a nested arrangement are often transcribed simultaneously, which may indicate that both have similar functions. miRNAs have been implicated in regulating defense responses against pathogen infection in C. elegans and in mammals. Here, we asked if miRNAs in nested arrangements and their host genes are involved in the C. elegans response against infection with Bacillus thuringiensis (Bt). We performed miRNA sequencing and functional genetic analysis of miRNA and/or host gene in four nested arrangements. We identified mir-58.1 and mir-2 as negative regulators of C. elegans resistance to Bt infection. However, we did not find any miRNA/host gene pair in which both contribute to defense against Bt.
Project description:This microarray was used to monitor gene expression in early third-instar larvae of Bt-susceptible O. nubilalis after 6-h feeding on diet with or without Bacillus thuringiensis (Bt) Cry1Ab protoxin.We identified 174 transcripts, for which the expression was changed more than 2-fold in the gut of the larvae fed Cry1Ab protoxin (p<0.05), representing 80 down-regulated and 94 up-regulated transcripts. Among 174 differentially expressed transcripts, 13 transcripts putatively encode proteins that are potentially involved in Bt toxicity, and these transcripts include eight serine proteases, three aminopeptidases, one alkaline phosphatase, and one cadherin.
Project description:Transcriptional profiling of C. elegans nasp-1 / btr-1 mutant worms versus wild type N2 strain, both exposed to the bacterial pathogen Bacillus thuringiensis DB27.
Project description:The innate immune system acts as an early line of defense against microbial infection in all animals. It relies on activation of multiple signaling cascades that ultimately alter the abundance of molecules in cells. In this study, we utilized RNA-Seq to investigate the immune response of C.elegans infected by the Gram-positive pathogen Bacillus thuringiensis (BT). With the help of previously published proteome data on same pathogen and worm strain, we presented a detail high throughput analysis about worm immune response at both protein and mRNA levels. As a result, we identified gene sets that reflect transcriptional and post-transcriptional mechanisms of immune response. Finally, we emphasize the important role of C-type lectin domain-containing proteins and propose that AMPKs are new regulators of the immune response to infection with BT and possibly other pathogens, which link the pathogen induced damage of cells to defence response.